!!YE205-销轴轴端的槽、面铣成组夹具设计.doc

销轴轴端的槽、面铣成组夹具设计【三维UG】【全套CAD图纸+毕业论文】【原创资料】

收藏

资源目录
跳过导航链接。
销轴轴端的槽、面铣成组夹具设计【三维UG】【全套CAD图纸+毕业论文】【原创资料】.rar
!!YE205-销轴轴端的槽、面铣成组夹具设计.doc---(点击预览)
文献综述.doc---(点击预览)
开题报告.doc---(点击预览)
外文翻译.doc---(点击预览)
外文文献.pdf---(点击预览)
任务书.doc---(点击预览)
YE205 UG 3D
daotao.prt
gunhualuomu.prt
jiajuti.prt
pianxinzhou.prt
round nuts gb_GB_FASTENER_NUT_RN M20X1.5-N.prt
tanxingjiatou.prt
YE205 zongzhuangpeitu1.log
YE205 zongzhuangpeitu1.STP
YE205 zongzhuangpeitu1_stp.prt
zhongxinzhou.prt
zhou.prt
工件.dwg
工件定位夹紧.dwg
!!YE205夹具图纸集合.dwg
压缩包内文档预览:(预览前20页/共34页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:463917    类型:共享资源    大小:2.11MB    格式:RAR    上传时间:2015-08-01 上传人:好资料QQ****51605 IP属地:江苏
50
积分
关 键 词:
销轴轴端 成组 夹具 设计 三维 ug 全套 cad 图纸 毕业论文 原创 资料
资源描述:

销轴轴端的槽、面铣成组夹具设计


【摘要】 本设计是针对成组夹具的工艺规程和夹具的设计,首先通过对成组技术知识的了解明白成组技术的概念,分清其共同特点,目的是通过所找出的同组零件设计出一个具有包含所选零件特性的典型零件,然后对所设计的典型零件进行工艺的编制,最后在设计出一个复合要求的夹具,此夹具必须能够加工所选类型的所有零件的工同部分。


【关键词】 成组夹具  设计

The shaft end of the pin shaft groove, milling fixture design


【Abstract】  This design is designed according to the process of group jigs and fixtures, firstly understand the conception of group technology of group technology knowledge, to distinguish between the common features, in order to find out the same group of parts to design a typical parts including the selected characteristics of the parts, and preparation process the typical parts design, finally design a complex requirements of the fixture, the fixture must be able to process the selected type of all parts with parts.


【Key Words】  Group Fixture Design

目 录

1 前 言1

1.1 成组夹具设计的国内外现状1

1.1.1 国内成组技术应用及现状1

1.1.2 成组工艺在国外的发展状况2

1.2 成组夹具设计的发展趋势3

2 基本研究内容5

2.1 工艺路线的制定5

2.2 加工基准面的选取6

2.3 切削用量及基本时间的确定6

3 成组夹具设计方法9

3.1 成组夹具的基本概念9

3.2 成组夹具的调整方式9

3.3 成组夹具设计原则10

3.4 成组夹具设计步骤11

4  专用夹具的设计12

4.1 铣床专用夹具的主要类型12

4.2 铣床专用夹具的设计要点12

4.3 夹紧装置13

4.4 专用夹具的基准选择13

4.5 机床夹具的概述14

4.5.1机床夹具概述14

4.5.2 机床夹具的种类14

4.5.3 机床夹具的组成14

4.6 铣床夹具的分类15

4.7 铣削专用夹具的设计要点15

4.8 铣床夹具的安装15

4.9 工件的定位与误差分析16

4.9.1 工件定位的基本原理16

4.9.2 定位方法与定位元件16

4.9.3 工件的误差分析17

4.9.4 定位误差产生的原因18

4.10 夹紧装置18

4.10.1夹紧装置的组成18

4.10.2 对夹紧装置的基本要求19

4.10.3 夹紧力的确定19

4.10.4 夹紧力大小计算19

4.11 夹紧机构种类20

4.12 减小夹紧变形措施20

4.13 定位误差的计算与分析20

4.14 夹具体21

5 夹具图绘制22

5.1 工序图22

5.2 夹具体零件图22

5.3 绘制夹具装配总图23

5.3.1 标注尺寸、公差与配合23

5.3.2制订技术条件24

5.4 三维装配图UG建模24

结束语26

致谢27

参考文献28


1 前 言

随着社会的发展,人类的进步,人们对于日常生活、工作中的物资需求呈现出了极大的多样化与复杂化。传统的简单的产品已经难以再满足人们的需求。而且在企业、工厂的运营过程中,需要的工具也不断精细化与多样化,给制造业带来了新的难题。个性化的社会导致了制造产品大批量越来越少,更多的是需求多品种少批量,这种单件小值的生产模式是对传统的机械加工产业模式的挑战[1]。为此,制造技术的研究者提出了成组技术的科学理论及实现方法,从根本上解决了生产由于品种多、产量少带来的矛盾。它是将多种零件按其工艺的相似性分类成组,以形成零件族,即把同一零件族中零件分散的小生产量汇聚成较大的成组生产量,从而使小批量生产能获得接近于大批量生产的经济效益,成组夹具便应运而生[2]。

成组夹具的应用可以扩大机床的使用范围,提高生产效率和零件的加工质量,也能够降低工人的劳动强度,缩短生产准备周期,提高劳动生产率[3]。而且随着成组夹具的应用和发展,必将加速开拓成组技术新的应用领域。因此,成组夹具将是我国机械工业今后夹具发展的一个主要方面。


内容简介:
浙江工业大学之江学院毕业设计(论文)任务书 学生姓名 楼挺 学号 201120070312 专业班级 机自 1102 题 目 销轴轴端的槽、面铣成组夹具设计 指导教师 舒欣 职 称 讲师 课题类型 设计 论文 课题来源 教师科研课题 教师生产实际课题 学生自立课题 毕业设计(论文)起止时间 2014 年 11 月 1 日至 2015 年 6 月 15 日 一、毕业设计(论文)的主要内容及要求 1、开题报告和文献阅读 ( 1)文献阅读:查阅文献应不少于 15 篇,其中 外文文献不少于 2 篇,近 5 年内的文献数应不少于文献总数的 1/3,并应有近 2 年内的文献。 ( 2)文献综述: 3000 字以上,包括国内外现状、研究方向、进展情况、存在问题、参考依据等。 ( 3)开题报告: 2000 字以上,包括选题的意义、可行性分析、研究的内容、研究方法、拟解决的关键问题、预期结果、研究进度计划等。 ( 4)外文翻译: 3000 字以上(翻译成中文后的汉字字数)。 2、课题要解决的主要问题和具体要求 本课题通过分析一组小轴类零件 上铣削槽的 特点,找出共性,确定铣削夹具形式,进行结构设计, 确保定位精度满足加工要求 ,工件夹紧牢固可靠 ;要求 机构合理、加工方便等, 并绘制二维、三维装配图和部分零件的工程图。 3、论文: 10000 字以上(部分特殊专业根据实际情况,经教务办确认,可适当调整有关字数方面的要求),包括绪论、正文、结论、参考文献等。 二、主要参考文献 1 徐爱玲 机床夹具设计方法探讨 J 装备制造技术, 2008( 8) : 60-64 2 隋聚艳 夹具的发展及其趋势分析 J 现代商贸工业 , 2009, 32( 19): 323-324 3 李定志,龚书强,王永国 成组夹具技术在小批量铣加工生产中的应用 J机械工人冷加工, 2007 (1): 43-44 4 张亚明, 机床夹具的分类与构成 J 煤炭技术, 2008, 27( 4): 12-13 5 王守忠,陈爱荣 成组夹具技术在机械加工中的应用探析 J 商丘职业技术学院学报,2006(2): 62-64 指导教师签名: 年 月 日 专 业教研室意见: 同意下达任务书 不同意下达任务书 教研室主任签章: 年 月 日 nts Procedia CIRP 21 ( 2014 ) 189 194 Available online at 2212-8271 2014 Elsevier B.V. This is an open access article under the CC BY-NC-ND license (/licenses/by-nc-nd/3.0/).Selection and peer-review under responsibility of the International Scientific Committee of “24th CIRP Design Conference” in the person of the Conference Chairs Giovanni Moroni and Tullio Toliodoi: 10.1016/cir.2014.03.120 ScienceDirect24th CIRP Design ConferenceRobust design of fixture configurationGiovanni Moronia, Stefano Petroa,*, Wilma PolinibaMechanical Engineering Department, Politecnico di Milano, Via La Masa 1, 20156, Milano, ItalybCivil and Mechanical Engineering Department, Cassino University, Via di Biasio 43, 03043, Cassino, ItalyCorresponding author. Tel.:+39-02-2399-8530; fax:+39-02-2399-8585. E-mail address: stefano.petropolimi.itAbstractThe paper deals with robust design of fixture configuration. It aims to investigate how fixture element deviations and machine tool volumetricerrors aect machining operations quality. The locator position configuration is then designed to minimize the deviation of machined featureswith respect to the applied geometric tolerances.The proposed approach represents a design step that goes further the deterministic positioning of the part based on the screw theory, and may beused to look for simple and general rules easily applicable in an industrial context.The methodology is illustrated and validated using simulation and simple industrial case studies.c2014 The Authors. Published by Elsevier B.V.Selection and peer-review under responsibility of the International Scientific Committee of “24th CIRP Design Conference” in the person of theConference Chairs Giovanni Moroni and Tullio Tolio.Keywords: Tolerancing; Error; Modular Fixture.1. IntroductionWhen a workpiece is fixtured for a machining or inspectionoperation, the accuracy of an operation is mainly determined bythe eciency of the fixturing method. In general, the machinedfeature may have geometric errors in terms of its form and posi-tion in relation to the workpiece datum reference frame. If thereexists a misalignment error between the workpiece datum ref-erence frame and machine tool reference frame, this is knownas localization error 1 or datum establishment error 2. Alocalization error is essentially caused by a deviation in the po-sition of the contact point between a locator and the workpiecesurface from its nominal specification. In this paper, such a the-oretical point of contact is referred to as a fixel point or fixel,and its positioning deviation from its nominal position is calledfixel error. Within the framework of rigid body analysis, fixelerrors have a direct eect on the localization error as defined bythe kinematics between the workpiece feature surfaces and thefixels through their contact constraint relationships 3.The localization error is highly dependent on the configu-ration of the locators in terms of their positions relative to theworkpiece. A proper design of the locator configuration (orlocator layout) may have a significant impact on reducing thelocalization error. This is often referred to as fixture layout op-timization 4.A main purpose of this work is to investigate how geomet-ric errors of a machined surface (or manufacturing errors) arerelated to main sources of fixel errors. A mathematic frame-work is presented for an analysis of the relationships among themanufacturing errors, the machine tool volumetric error, andthe fixel errors. Further, optimal fixture layout design is speci-fied as a process of minimizing the manufacturing errors. Thispaper goes beyond the state of the art, because it considers thevolumetric error in tolerancing. Although the literature demon-strates that the simple static volumetric error considered hereis only a small portion of the total volumetric error, a generalframework for the inclusion of volumetric error in tolerancingis established.There are several formal methods for fixture analysis basedon classical screw theory 5,6 or geometric perturbation tech-niques 3. In nineties many studies have been devoted to modelthe part deviation due to fixture 7. Sodenberg calculated a sta-bility index to evaluate the goodness of the locating scheme 8.The small displacement torsor concept is used to model the partdeviation due to geometric variation of the part-holder 9. Con-ventional and computer-aided fixture design procedures havebeen described in traditional design manuals 10 and recent lit-erature 11,12, especially for designing modular fixtures 13.A number of methods for localization error analysis and reduc-tion have been reported. A mathematical representation of thelocalization error was given in 14 using the concept of a dis-placements screw vector. Optimization techniques were sug- 2014 Elsevier B.V. This is an open access article under the CC BY-NC-ND license (/licenses/by-nc-nd/3.0/).Selection and peer-review under responsibility of the International Scientifi c Committee of “24th CIRP Design Conference” in the person of the Conference Chairs Giovanni Moroni and Tullio Tolionts190 Giovanni Moroni et al. / Procedia CIRP 21 ( 2014 ) 189 194 gested to minimize the magnitude of the localization error vec-tor or the geometric variation of a critical feature 14,15. Ananalysis is described by Chouduri and De Meter 2 to relatethe locator shape errors to the worst case geometric errors inmachined features. Geometric deviations of the workpiece da-tum surfaces were also analyzed by Chouduri and De Meter2 for positional, profile, and angular manufacturing tolerancecases. Their eects on machined features, such as by drillingand milling, were illustrated. A second order analysis of thelocalization error is presented by Carlson 16. The computa-tional diculties of fixture layout design have been studied withan objective to reduce an overall measure of the localization er-ror for general three dimensional (3D) workpieces such as tur-bine air foils 1,4. A more recent paper shows a robust fixturelayout approach as a multi-objective problem that is solved bymeans of Genetic Algorithms 17. It considers a prismatic andrigid workpiece, the contact between fixture and workpiece iswithout friction, and the machine tool volumetric error is notconsidered.About the modeling of the volumetric error, several modelshave been proposed in literature. Ferreira et al. 18,19 haveproposed quadratic model to model the volumetric error of ma-chines, in which each axis is considered separately, thoghetherwith a methodology for the evaluation of the model parame-ters. Kiridena and Ferreira in a series of three papers 2022discuss how to compensate the volumetric error can be mod-eled, the parameters of the model evaluated, and then the er-ror compensated based on the model and its parameters, for athree-axis machine. Dorndorf et al. 23 describe how volu-metric error models can help in the error budgeting of machinetools. Finally, Smith et al. 24 describe the application of vol-umetric error compensation in the case of large monolithic partmanufacture, which poses serious diculties to traditional vol-umetric error compensation. Anyway, it is worth noting that allthese approaches are aimed at volumetric error compensation:generally volumetric error is not considered for simulation intolerancing.In previous papers a statistical method to estimate the po-sition deviation of a hole due to the inaccuracy of all the sixlocators of the 3-2-1 locating scheme was developed for 2Dplates and 3D parts 25,26. In the following, a methodologyfor robust design of fixture configuration is presented. It aimsto investigate how fixel errors and machine tool volumetric er-ror aect machining operations quality.In2 the theoreticalapproach is introduced, in3 a simple industrial case study ispresented, and in4 some simple and general rules easily ap-plicable in an industrial contest are discussed.2. Methodology for the simulation of the drilling accuracyTo illustrate the proposed methodology, the case study ofa drilled hole will be considered. The case study is shown inFig. 1. A location tolerance specifies the hole position. Threelocators on the primary datum, two on the secondary datum,and one on the tertiary determine the position of the workpiece.Each locator has coordinates related to the machine tool refer-ence frame, represented by the following six terns of values:p1(x1,y1,z1) p2(x2,y2,z2) p3(x3,y3,z3)p4(x4,y4,z4) p5(x5,y5,z5) p6(x6,y6,z6)(1)Fig. 1. Locator configuration schema.The proposed approach considers the uncertainty source inthe positioning error of the machined hole due to the error inthe positioning of the locators, and the volumetric error of themachine tool. The final aim of the model is to define the ac-tual coordinates of the hole in the workpiece reference system.The model input includes the nominal locator configuration, thenominal hole location (supposed coincident with the drill tip)and direction (supposed coincident with the drill direction), andthe characteristics of typical errors which can aect this nomi-nal parameters.2.1. Eect of locator errorsThe positions of the six locators are completely defined bytheir eighteen coordinates. It is assumed that each of these coor-dinates is aected by an error behaving independently, accord-ing to a Gaussian NparenleftBig0,2parenrightBigdistribution.The actual locator coordinates will then identify the work-piece reference frame. In particular, the zprimeaxis is constitutedby the straight line perpendicular to the plane passing throughthe actual positions of locators p1, p2and p2, the xprimeaxis is thestraight line perpendicular to the zprimeaxis and to the straight linepassing through the actual position of locators p4and p5, andfinally the yprimeaxis is straightforward computed as perpendicularto both zprimeand xprimeaxes. The origin of the reference frame can beobtained as intersection of the three planes having as normalsthe xprime, yprime, and zprimeaxes and passing through locators p4, p6andp1respectively. The formulas for computing the axis-directionvectors and origin coordinates from the actual locators coordi-nates are omitted here, for reference see the work by Armillottaet al. 26.The axis-direction vectors and origin coordinates define anhomogeneous transformation matrix0Rp27, which allows toconvert the drill tip coordinate expressed in the machine toolreference frame P0to the same coordinates expressed in theworkpiece reference frame Pprime0, through the formula:Pprime0=0R1pP0(2)nts191 Giovanni Moroni et al. / Procedia CIRP 21 ( 2014 ) 189 194 2.2. Eect of machine tool volumetric errorTo simulate the hole location deviation due to the drillingoperation, i.e. to the volumetric error of the machine tool, theclassical model of three-axis machine tool has been considered27. It will be assumed the drilling tool axis is coincident withthe machine tool z axis, so that, in nominal conditions and at thebeginning of the drilling operation, its tip position can be de-fined by the nominal hole location and the homogeneous vectork = 0010T. The aim is to identify the position errorpof the drill tip in the machine tool reference system, and thedirection error dof the tool axis. According to the three-axismachine tool model it is possible to state that:p=0R11R22R3P3P0(3)where P0=bracketleftbigxyzl 1bracketrightbigTis the nominal drill tip locationin the machine tool reference system (x, y, and z being the trans-lations along the machine tool axes, and l being the drill length),P3= 00l 1Tis the drill tip position in the third (zaxis) reference system, and0R1,1R2,2R3are respectively theperturbed transformation matrices due to the perturbed transla-tion along the x, y, and z axes. These matrices share a similarform, for example:0R1=1 z(x) y(x) x+x(x)z(x) 1 x(x) y(x)y(x) x(x) 1 z(x)000 1(4)where theandterms are the translation and rotation errorsalong and around the x, y, and z axes (e.g. z(x) is the rotationerror around the z axis due to a translation along the x axis).Considering three transformation matrices, there are eighteenerror terms. These errors are usually a function of the volu-metric position (i.e. the translations along the three axes), butif the volumetric error is compensated, their systematic com-ponent can be neglected and they can be assumed to be purelyrandom with mean equal to zero. Developing Eq. (3) leads tovery complex equations; for example,dx=x(x)+x(y)z(x)(y(y)+y)y(z)(z(x)+z(y)x(y)y(x)+z(y)y(x)x(z)(y(x)y(y)+z(x)z(y)1)l(y(x)+y(y)+x(z)(z(x)+z(y)x(y)y(x)+x(y)z(x)y(z)(y(x)y(y)+z(x)z(y)1)+(z(z)+z)(y(x)+y(y)+x(y)z(x)(5)However, volumetric errors in general should be far smallerthan translations along the axes, so only the first order com-ponents of Eq. (3) are usually significant. Finally, Assumingthe drilling tool axis coincide with the z axis, Eq. (3) can alsocalculate the direction error dby substituting P0=P3=k.If only the first order components are considered, it is possi-ble to demonstrate that pand dare linear combination of theandterms. In particular, lets define as=bracketleftBiggpdbracketrightBigg(6)the six-elements vector containing pand dstaked. ApplyingEq. (3), neglecting terms above the second order, it is possibleto demonstrate that (please note that, due format constraints, inEq. (7) the dots . indicate that a row of the matrix is bro-ken over more lines, so the overall linear combination matrixappearing here isa6X18matrix)=111000.000000.zlzl l y 00000111.000lzlzl.000000000000.111000.000000000000.000100.1 1 1000000000.000111.010000000000.000000.000001x(x)x(y)x(z)y(x)y(y)y(z)z(x)z(y)z(z)x(x)x(y)x(z)y(x)y(y)y(z)z(x)z(y)z(z)=Cd (7)Now, lets assume that each term is independently dis-tributed according to a Gaussian NparenleftBig0,2pparenrightBigdistribution, andthat each term is independently distributed according to aNparenleftBig0,2dparenrightBigdistribution. It is then possible to demonstrate 28that follows a multivariate Gaussian distribution, with nullexpected value and covariance matrix which can be calculatedby the formula CCT, where is the covariance matrix of d,which happens to be a diagonal 18 X 18 matrix with the firstnine diagonal elements equal to2p, an the remaining diagonalnts192 Giovanni Moroni et al. / Procedia CIRP 21 ( 2014 ) 189 194 elements equal to2d. The final covariance matrix of is:2dy2+22d(lz)2+32p+l22d002d(3l2z)2d(lz)0022d(lz)2+32p+l22d02d(lz)2d(3l2z)00032p0002d(3l2z)2d(lz)042d002d(lz)2d(3l2z)0042d0000002d(8)This model can be adopted to simulate the error in the loca-tion and direction of the hole due to the machine tool volumetricerror.2.3. Actual location of the manufactured holeNow, it is possible to simulate the tip location and directionaccording to the model described in 2.2, and to transform itinto the workpiece reference frame as described in2.1:P0prime=0R1pparenleftBigP0+pparenrightBigkprime=0R1p(k+d)(9)With this information it is possible to determine the entranceand exit location of the hole in the workpiece reference system.Point Pprime0and vector kprimedefine a straight line, which is nothingelse than the hole axis, as:pprime=P0prime+skprimepxprimepyprimepzprime=P0xprimeP0yprimeP0zprime+skxprimekyprimekzprime(10)where p is a generic point belonging to the line and s R isa parameter. Defining T as the plate thickness, it is possible tocalculate the values of s for which pprimezis equal respectively to 0and T:sexit=P0zprime/kzprimesentrance=(P0zprimeT)/kzprime(11)These values of s substituted in Eq. (10) yield respectivelythe coordinates of the exit and entrance point of the hole.Finally, it is possible to calculate the distances between thetwo exit and entrance points of the drilled and nominal holes:d1=vextendsinglevextendsinglevextendsingleP0prime+sentrancekprimeP0vextendsinglevextendsinglevextendsingled2=vextendsinglevextendsinglevextendsingleP0prime+sexitkprimeP0,exitvextendsinglevextendsinglevextendsingle(12)where P0,exitis the nominal location of the hole exit point. Theaxis of the drilled hole will be inside location tolerance zoneof the hole if both the distances calculated by Eq. (12) will belower than the half of the location tolerance value t:d1t/2d2t/2(13)3. Case study resultsThe model proposed so far has been considered to identifythe expected quality due to locator configuration, given a ma-chine tool volumetric error. To identify which is the optimalone an experiment has been designed and results have been an-alyzed by means of analysis of variance (ANOVA) 29.Because the aim of the research regards only the choice oflocators positions, most of the model parameters can be keptconstant. The constant parameters include: the nominal sizeof the plate (100 x 120 x 60 mm); the standard deviation ofthe random errors in locator positioning (= 0.01 mm); thenominal location of the entrance (P0= 40 70 60T) andexit (P0= 40 70 0T
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:销轴轴端的槽、面铣成组夹具设计【三维UG】【全套CAD图纸+毕业论文】【原创资料】
链接地址:https://www.renrendoc.com/p-463917.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!