已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
导数与微分一、选择题1. 设函数f (x)可导,则【 】 A. B. C. D. 2. 设函数f (x)可导,则【 】A. B. C. D. 3. 函数在处的导数【 】 A. 不存在 B. C. D. 4. 设,则【 】 A. B. C. D. 5. 设,则【 】 A. B. C. D. 6. 设函数f (x)可导,则【 】 A. B. C. D. 7. 设,其中是可导函数,则=【 】 A. B. C. D. 8. 设函数f (x)可导,则【 】 A. B. C. D. 9. 设,其中是可导函数,则=【 】 A. B. C. D. 10.设,其中是可导函数,则=【 】 A. B. C. D. 11.设函数f (x)可导,则【 】 A. B. C. D. 12.设y=sinx,则y(10)|x=0=【 】 A. 1 B. -1 C. 0 D. 2n13.设函数f (x)可导,则【 】 A. B. C. D. 14.设y=sinx,则y(7)|x=0=【 】 A. 1 B. 0 C. -1 D. 2n15.设函数f (x)可导,则【 】 A. B. C. - D. 16.设y=sinx,则=【 】 A. 1 B. 0 C. -1 D. 2n17.已知函数在的某邻域内有定义,则下列说法正确的是【 】 A. 若在连续, 则在可导 B. 若在处有极限, 则在连续C. 若在连续, 则在可微 D. 若在可导, 则在连续18.下列关于微分的等式中,正确的是【 】 A. B. C. D. 19.设,则【 】A. B. C. D. 不存在20.设函数在可导,则【 】 A. B. C. D. 21.下列关于微分的等式中,错误的是【 】 A. B. C. D. 22.设函数,则【 】 A. 0 B. 1 C. -1 D. 不存在23.设,则【 】 A. B. C. D. 24.设函数在可导,则【 】 A. B. C. D. 25.下列关于微分的等式中,错误的是【 】 A. B. C. D. 26.设函数在处可导,且,则【 】 A. B. C. D. 27.设函数在可导,则【 】 A. B. C. D. 28.设函数在可导且,则【 】 A. -2 B. 1 C. 6 D. 329.下列求导正确的是【 】 A. B. C. D. 30.设,且,则=( )。A. B. e C. D. 131.设,则y(8)=【 】A. B. C. D. 32.设是可微函数,则( ) A. B.C. D. 33.已知则【 】A. B. C. D. 二、填空题1. 曲线在点处的切线方程是_.2. 函数的微分=_.3. 设函数有任意阶导数且,则 。4. 曲线在点处的切线方程是 。5. 函数的微分= 。6. 曲线在点处的切线方程是_. 7. 函数的微分=_.8. 某商品的成本函数,则时的边际成本是_.9. 设函数由参数方程所确定,则=_. 10. 函数的微分=_.11. 曲线在点处的法线方程是_.12. 设函数由参数方程所确定,则=_. 13. 函数的微分=_.14. 某商品的成本函数,则时的边际成本是_.15. 设函数由参数方程所确定,则=_. 16. 函数的微分=_.17. 曲线在点处的切线与轴的交点是_. 18. 函数的微分=_.19. 曲线在点处的切线与轴的交点是_. 20. 函数的微分=_.21. 曲线在点处的切线与轴的交点是_. 22. 函数的微分=_.23. 已知,则_.24. 已知函数,则_. 25. 函数的微分_.26. 已知函数,则 .27. 函数的微分= .28. 已知曲线的某条切线平行于轴,则该切线的切点坐标为 .29. 函数的微分= .30. 已知曲线在处的切线的倾斜角为,则 .31. 若,则32. 函数的微分=_.33. 已知函数是由参数方程确定,则_.34. 函数的微分=_.35. 函数的微分= 36. 由参数方程所确定的函数的导数 三、计算题1. 设函数,求2. 求由方程所确定的隐函数的导数。3. 求曲线在相应点处的切线与法线方程.4. 设函数,求.5. 设是由方程所确定的隐函数,求。6. 求椭圆在相应点处的切线与法线方程.7. 设函数,求.8. 设是由方程所确定的隐函数,求。9. 求摆线在相应点处的切线与法线方程.10. 设函数,求及.11. 求由方程所确定的隐函数的导数12. 设函数,求13. 求由方程所确定的隐函数的导数14. 设函数,求.15. 求由方程所确定的隐函数在处的导数16. 设函数,求微分.17. 设函数,求微分.18. 设函数,求微分.19. 求由方程所确定的隐函数的导数20. 求由方程所确定的隐函数的导数21. 求由方程所确定的隐函数的导数22. 设函数在处可导,求的值.23. 已知方程所确定的隐函数,求24. 已知函数,求函数在处的微分25. 用对数求导法求函数的导数.26. 求由方程所确定的隐函数,求函数在处的微分.27. 设其中是可微函数,求28. 设求.29. 求由方程所确定的隐函数的导数30. 求由方程所确定的隐函数的导数31. 设函数,求和32. 求曲线在相应点处的切线方程与法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 法治宣传员考试题及答案
- 防火涂料2025检验报告(二)
- 食用油生产加工项目可行性研究报告
- 高效节能环保电机项目可行性研究报告参考模板-图文
- java实现协议书代理
- 项目占股协议书范本
- 快速冷却岛创新创业项目商业计划书
- 多功能印刷品覆膜机创新创业项目商业计划书
- (全国2025年7月)国际市场营销学(二)试题及答案
- 2025能源审计报告评审岗位晋升考核试卷
- 2025全国医疗应急能力培训系列课程参考答案
- 初中英语试卷讲评及课堂教学设计
- 雨课堂在线学堂《中国传统文化》课后单元测试答案
- 2025年郑州登封市公共交通运营有限公司社会招聘工作人员35人笔试考试参考题库及答案解析
- 新教科版小学1-6年级科学需做实验目录
- GB/T 8492-2024一般用途耐热钢及合金铸件
- GB/T 24202-2021光缆增强用碳素钢丝
- 阻尼复合材料课件
- 微生物农药细菌
- 新版GMP验证总计划
- 文化IP市场分析报告
评论
0/150
提交评论