




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课题:24.1.4 圆周角(人教版九年级上册)授课教师:付红 授课时间:2015.11.10一、教学目标知识与技能:理解圆周角的概念.探索圆周角与同弧所对的圆心角之间的关系,并会用圆周角定理及推论进行有关计算和证明。过程与方法:经历探索圆周角定理的过程,初步体会分类讨论的数学思想,渗透解决不确定的探索型问题的思想和方法,提高学生的发散思维能力。情感态度价值观(德育渗透):使学生领会数学的严谨性和探索精神,培养学生实事求是的科学态度和积极参与的主动精神,培养学生的探索精神和解决问题的能力通过积极引导,帮助学生有意识地积累活动经验,获得成功的体验。二、教学重点、难点教学重点:圆周角定理及其推论的探究与应用.教学难点:圆周角定理的证明中由一般到特殊的数学思想方法以及圆周角定理及推论的应用.三、教法与学法教法:探究式教学讲授法、发现法学法:探究合作式学习四、课时安排:1课时五、教学策略:创设情境,引入新课 合作交流 探索新知六、教学过程教学内容教师活动学生活动设计意图创设情景,导入新课如图是一个圆柱形的海洋馆的横截面示意图,人们可以通过其中的圆弧形玻璃窗AB观看窗内的海洋动物,同学甲站在圆心O的位置.同学乙站在正对着玻璃窗的靠墙的位置C,他们的视角(AOB和ACB)有什么关系?如果同学丙、丁分别站在其他靠墙的位置D和E,他们的视角(ADB和AEB)和同学乙的视角相同吗?学生思考引入课题讲授新课二、思考探究,获取新知1.圆周角的定义探究1 观察下列各图,图(1)中APB的顶点P在圆心O的位置,此时APB叫做圆心角,这是我们上节所学的内容.图(2)中APB的顶点P在O上,角的两边都与O相交,这样的角叫圆周角.请同学们分析(3)、(4)、(5)、(6)是圆心角还是圆周角.【教学说明】设计这样的一个判断角的问题,是再次强调圆周角的定义,让学生深刻体会定义中的两个条件缺一不可.2.圆周角定理探究2如图,(1)指出O中所有的圆心角与圆周角,并指出这些角所对的是哪一条弧?(2)量一量D、C、AOB的度数,看看它们之间有什么样的关系?(3)改变动点C在圆周上的位置,看看圆周角的度数有没有变化?你发现其中有规律吗?若有规律,请用语言叙述.为了进一步研究上面发现的结论,如图,在O上任取一个圆周角ACB,将圆对折,使折痕经过圆心O和ACB的顶点C.由于点C的位置的取法可能不同,这时折痕可能会:(1)在圆周角的一条边上;(2)在圆周角的内部;(3)在圆周角的外部.已知:在O中,所对的圆周角是ACB,圆心角是AOB,求证:ACB=1/2AOB.提示分析:我们可按上面三种图形、三种情况进行证明.如图(1),圆心O在ACB的边上,OB=OC,B=C,而BOA=B+C,B=C=1/2AOB.图(2)(3)的证明方法与图(1)不同,但可以转化成(1)的基本图形进行证明,证明过程请学生们讨论完成.得出圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对圆心角的一半.注意:定理应用的条件是“同圆或等圆中”,而且必须是“同弧或等弧”,如下图(1).若将定理中的“同弧或等弧”改为“同弦或等弦”结论就不成立了.因为一条弦所对的圆周角有两种情况,它们一般不相等(而是互补).如下图(2).三、典例精析,获取新知例题1.如图,A是圆O的圆周角, A=40,求OBC的度数。 例题2.如图,AB是O的直径 = , A=30,求BOD的度数这样的一个判断角的问题,是再次强调圆周角的定义,让学生深刻体会定义中的两个条件缺一不可。在定理的证明过程中,要使学生明确,要不要分情况来证明.若要分情况证明,必须要明白按什么标准来分情况,然后针对各种不同的情况逐个进行证明学生要能分清这个命题的题设和结论,并结合图形写出已知和求证.学生分析例题,进行讲解,不全的老师补充。从而交流总结,找出规律,同时引导学生观察圆心与圆周角的位置关系,为定理分情况证明作铺垫。加强学生对圆周角定理的理解,使学生能准确的掌握好圆周角定理。推论是圆中很重要的性质,为在圆中确定直角,构成垂直关系创造了条件.同时这一结论为在圆中证明直径提供了重要依据.加强对知识的巩固小结这节课你有什么收获和体会,和大家一起分享一下吧!学生总结分享收获培养学生的归纳能力课堂练习学案课堂检测进行自评检测学习效果作业布置书上第88页练习3、4、5七、板书设计课题:24.1.4 圆周角1. 圆周角定义: 圆周角定理的推导过程 例题12. 圆周角定理及推论: 例题2八、教学反思:本节课是在圆的基本概念和性质以及圆心角的概念和性质基础上,对圆周角定理进行探索。圆周角定理及推论在圆的有关说理、作图和计算中有着广泛的应用,也是学习圆的后续知识的重要预备知识,在教材中起着承上启下的作用。同时,圆周角定理及推论也是说明线段相等、角相等的重要依据之一。本节课的重点是圆周角的概念和经历探索圆周角定理及推论的过程,难点是合情推理验证圆周角和圆心角的关系。在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等”这一性质较容易掌握,理解起来问题不大。而对圆周角与圆心角的关系理解起来相对困难,特别是圆心在圆周角内部、圆心在圆周角外部这两种情况,因此在教学过程中我着重引导学生对这部分知识的探索与理解。还有些学生在运用知识解决问题的过程中忽略同弧的问题,在教学时我借用多媒体加以突出。本节课,以学生探究为主,配合多媒体辅助教学。在教学过程中,我将问题教学法、启发式教学法、探究式教学法、情景式教学法、互动式教学法等多种教学法融为一体,创设富有挑战性的问题情境,引导学生用数学的眼光看问题,发现规律,验证猜想。在教学中,我还注重学生的个体差异,让不同层次的学生充分参与到数学思维活动中来,充分发挥学生的主体作用。运用适度的激励,帮助学生认识自我,建立自信,不仅“学会”,而且“会学”、“乐学”。引导学生采用动手实践、自主探究、合作交流的方式进行学习,使学生在观察、实践、问题转化等数学活动中充分体验探索的快乐,发现新知,发展能力。与此同时,我通过适时的点拨、精讲,使观察、猜想、转化、归纳、实践、推理、验证、分类讨论贯穿在整个教学观察之中。在实际教学中,注重培养学生实事求是的科学态度和积极参与的主动精神,培养学生的探索精神和解决问题的能力,培养学生的集体主义意识,感受榜样的力量。在数学学习活动中经历成功与失败,获得成功的体验,锻炼克服困难的意志,建立自信心,鼓励学生思维的多样性,发展学生的创新意识,让学生体验数学与人类生活的密切联系,激发学生学习数学的兴趣,提高他们的学习积极性,同时提高大家的知识运用能力。本节课的不足之处有:1、由于内容较多,节奏有点快,有部分学生掌握的不够好,还需时间巩固练习。2、教学流程设计的不太理想,如导课环节、互动探究环节。改进措施: 1.小组合作与多媒体的使用要继续,尤其对多媒体的使用要更加的驾轻就熟,充分发挥多媒体的“潜力”。2.多钻研考题,备、授课前先做题,发现命脉,再制定教学目标。3.注意集体备课的效果,充分挖掘集体的才能,互补共进。4.吸收学习先进的教学资源,站在巨人的肩膀上,弥补经验不足的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年航空航天企业飞行领航员安全生产知识考试试题及答案
- 第4课 共同开发建设祖国说课稿-2025-2026学年中华民族大团结-中华民族大团结
- 高校和社区服务合同模板(3篇)
- 高铁站土建施工合同(3篇)
- 安徽司法考试试题及答案
- 河北经贸大学校园汽车租赁服务及车辆安全检查合同
- 本科毕业生就业服务及权益保障协议
- 2025公务员线上面试题及答案
- 舞蹈生专业测试题及答案
- 祖国我爱你教学设计课件
- 2024年版教育培训机构加盟合同范本
- DL∕T 976-2017 带电作业工具、装置和设备预防性试验规程
- 光伏电站的运维项目方案
- 认定露天煤矿重大隐患 培训课件2024
- 危重患者的早期识别
- 水泥混凝土路面施工方案 (详细)
- 兽药产品知识讲座
- 《神经学习与记忆》课件
- 2024心肺复苏培训课件完整版
- 小针刀治疗的应急预案
- 业务外包作业人员培训管理办法
评论
0/150
提交评论