八年级上学期期末复习试卷(几何压轴题).doc_第1页
八年级上学期期末复习试卷(几何压轴题).doc_第2页
八年级上学期期末复习试卷(几何压轴题).doc_第3页
八年级上学期期末复习试卷(几何压轴题).doc_第4页
八年级上学期期末复习试卷(几何压轴题).doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

班级: 姓名:_座号:_ 密 封 线 正兴学校20152016学年八年级上学期期末复习清北班数学科试题(几何压轴题)1如图,在x轴上有五个点,它们的横坐标依次为1,2,3,4,5分别过这些点作x轴的垂线与三条直线y=ax,y=(a+1)x,y=(a+2)x相交,其中a0若图中阴影部分的面积是75a,则a为 2. 如图,RtABC中,ACB=90,AC=BC=4cm,CD=1cm,若动点E以1cm/s的速度从A点出发,沿着ABA的方向运动,至A点结设E点的运动时间为t秒,连接DE,当BDE是直角三角形时,t的值为 秒3定义:三边长和面积都是整数的三角形称为“整数三角形”数学学习小组的同学从32根等长的火柴棒(每根长度记为1个单位)中取出若干根,首尾依次相接组成三角形,进行探究活动小亮用12根火柴棒,摆成如图所示的“整数三角形”;小颖分别用24根和30根火柴棒摆出直角“整数三角形”;小辉受到小亮、小颖的启发,分别摆出三个不同的等腰“整数三角形”(1)请你画出小颖和小辉摆出的“整数三角形”的示意图;(2)你能否也从中取出若干根,按下列要求摆出“整数三角形”,如果能,请画出示意图;如果不能,请说明理由摆出等边“整数三角形”;摆出一个非特殊(既非直角三角形,也非等腰三角形)“整数三角形”4如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B处,点A落在点A处;(1)求证:BE=BF;(2)设AE=a,AB=b,BF=c,试猜想a,b,c之间的一种关系,并给予证明5我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称;(2)如图1,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你画出以格点为顶点,OA,OB为勾股边且对角线相等的勾股四边形OAMB;(3)如图2,将ABC绕顶点B按顺时针方向旋转60,得到DBE,连接AD,DC,DCB=30求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形6阅读下面材料,并解决问题:(I)如图4,等边ABC内有一点P若点P到顶点A,B,C的距离分别为3,4,5则APB= ,由于PA,PB不在一个三角形中,为了解决本题我们可以将ABP绕顶点A旋转到ACP处,此时ACP 这样,就可以利用全等三角形知识,将三条线段的长度转化到一个三角形中从而求出APB的度数(II)(拓展运用)已知ABC三边长a,b,c满足(1)试判断ABC的形状 ;(2)如图1,以点A为原点,AB所在直线为x轴建立平面直角坐标系,直接出点B,C的坐标 ;(3)如图2,过点C作MCN=45交AB于点M,N请证明AM2+BN2=MN2;(4)在(3)的条件下,若点N的坐标是(8,0),则点M的坐标为 ;此时MN= 并求直线CM的解析式(5)如图3,当点M,N分布在点B异侧时则(3)中的结论还成立吗?解:7在平面直角坐标系中,点P从原点O出发,每次向上平移2个单位长度或向右平移1个单位长度(1)实验操作:在平面直角坐标系中描出点P从点O出发,平移1次后,2次后,3次后可能到达的点,并把相应点的坐标填写在表格中:P从点O出发平移次数可能到达的点的坐标1次(0,2),(1,0)2次3次(2)观察发现:任一次平移,点P可能到达的点在我们学过的一种函数的图象上,如:平移1次后在函数 的图象上;平移2次后在函数 的图象上由此我们知道,平移n次后在函数 的图象上(请填写相应的解析式)(3)探索运用:点P从点O出发经过n次平移后,到达直线y=x上的点Q,且平移的路径长不小于50,不超过56,求点Q的坐标解:班级: 姓名:_座号:_ 密 封 线 正兴学校20152016学年八年级上学期期末复习清北班数学科试题(几何压轴题)1如图,在x轴上有五个点,它们的横坐标依次为1,2,3,4,5分别过这些点作x轴的垂线与三条直线y=ax,y=(a+1)x,y=(a+2)x相交,其中a0若图中阴影部分的面积是75a,则a为 解:将8条直线共15个交点求出(不计与坐标系的,很简单,直接写) p1(1,a),p2(2,2a),p3(3,3a),p4 (4,4a),p5 (5,5a); q1(1,(a+1),q5(5,5(a+1); r1(1,(a+2)r5(5,5(a+2) (p1离原点最近,r5离原点最远)用梯形公式求出各阴影部分面积并求和(底为纵坐标之差,高为1)S1=r1q1=; S2=(q1p1+q2p2)1=;S3=(r2q2+r3q3)1)=(2(a+2)2(a+1)+(3(a+2)3(a+1)=,同理可得S4=,S5= (仿S3一样计算)S=S1+S2+S3+S4+S5=+=12.5,S=75a,75a=12.5,a=2. 如图,RtABC中,ACB=90,AC=BC=4cm,CD=1cm,若动点E以1cm/s的速度从A点出发,沿着ABA的方向运动,至A点结设E点的运动时间为t秒,连接DE,当BDE是直角三角形时,t的值为 秒解:RtABC中,ACB=90,AC=BC=4cm,ABC=45,AB=(cm)。BC=4cm,CD=1cm,BD=3cm。若DEB=90,则BE=BD=(cm)。3定义:三边长和面积都是整数的三角形称为“整数三角形”数学学习小组的同学从32根等长的火柴棒(每根长度记为1个单位)中取出若干根,首尾依次相接组成三角形,进行探究活动小亮用12根火柴棒,摆成如图所示的“整数三角形”;小颖分别用24根和30根火柴棒摆出直角“整数三角形”;小辉受到小亮、小颖的启发,分别摆出三个不同的等腰“整数三角形”(1)请你画出小颖和小辉摆出的“整数三角形”的示意图;(2)你能否也从中取出若干根,按下列要求摆出“整数三角形”,如果能,请画出示意图;如果不能,请说明理由摆出等边“整数三角形”;摆出一个非特殊(既非直角三角形,也非等腰三角形)“整数三角形”【解答】解:(1)小颖摆出如图1所示的“整数三角形”:小辉摆出如图2所示三个不同的等腰“整数三角形”:(2)不能摆出等边“整数三角形”理由如下:设等边三角形的边长为a,则等边三角形面积为因为,若边长a为整数,那么面积一定非整数所以不存在等边“整数三角形”;能摆出如图3所示一个非特殊“整数三角形”:4如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B处,点A落在点A处;(1)求证:BE=BF;(2)设AE=a,AB=b,BF=c,试猜想a,b,c之间的一种关系,并给予证明【解答】(1)证明:由题意得BF=BF,BFE=BFE,在矩形ABCD中,ADBC,BEF=BFE,BFE=BEF,BF=BE,BE=BF;(2)答:a,b,c三者关系不唯一,有两种可能情况:()a,b,c三者存在的关系是a2+b2=c2证明:连接BE,由(1)知BE=BF=c,BE=BE,四边形BEBF是平行四边形,BE=c在ABE中,A=90,AE2+AB2=BE2,AE=a,AB=b,a2+b2=c2;()a,b,c三者存在的关系是a+bc证明:连接BE,则BE=BE由(1)知BE=BF=c,BE=c,在ABE中,AE+ABBE,a+bc5我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称;(2)如图1,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你画出以格点为顶点,OA,OB为勾股边且对角线相等的勾股四边形OAMB;(3)如图2,将ABC绕顶点B按顺时针方向旋转60,得到DBE,连接AD,DC,DCB=30求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形(1)解:正方形、长方形、直角梯形(任选两个均可)(2)解:答案如图所示M(3,4)或M(4,3)(3)证明:连接EC,ABCDBE,AC=DE,BC=BE,CBE=60,EC=BC=BE,BCE=60,DCB=30,DCE=90,DC2+EC2=DE2,DC2+BC2=AC2即四边形ABCD是勾股四边形、6阅读下面材料,并解决问题:(I)如图4,等边ABC内有一点P若点P到顶点A,B,C的距离分别为3,4,5则APB=150,由于PA,PB不在一个三角形中,为了解决本题我们可以将ABP绕顶点A旋转到ACP处,此时ACPABP这样,就可以利用全等三角形知识,将三条线段的长度转化到一个三角形中从而求出APB的度数(II)(拓展运用)已知ABC三边长a,b,c满足(1)试判断ABC的形状等腰直角三角形(2)如图1,以点A为原点,AB所在直线为x轴建立平面直角坐标系,直接出点B,C的坐标B(12,0),C(6,6);(3)如图2,过点C作MCN=45交AB于点M,N请证明AM2+BN2=MN2;(4)在(3)的条件下,若点N的坐标是(8,0),则点M的坐标为(3,0);此时MN=5并求直线CM的解析式(5)如图3,当点M,N分布在点B异侧时则(3)中的结论还成立吗?解:()ABC是等边三角形,BAC=60,ABP绕顶点A旋转到ACP处,ACPABP,PA=PA=3,PB=PC=4,PAP=BAC=60,APP是等边三角形,APP=60,PP=PA=3,在PPC中,PP2+PC2=32+42=25=PC2,PPC=90,APB=APC=APP+PPC=60+90=150,APB=150;故答案是:150,ABP;()(1)整理得,|a6|+(c12)2+=0,由非负数的性质得,a6=0,c12=0,b6=0,解得a=b=6,c=12,a2+b2=(6)2+(6)2=144=c2,ABC是直角三角形,又a=b,ABC是等腰直角三角形;(2)AB=c=12,点B(12,0),过点C作CDx轴于D,则AD=CD=AB=12=6,点C的坐标为(6,6);(3)如图,把ACM绕点C逆时针旋转90得到BCM,连接MN,由旋转的性质得,AM=BM、CM=CM、CAM=CBM=45,ACM=BCM,MBN=ABC+CBN=45+45=90,MCN=45,MCN=BCN+BCM=BCN+ACM=90MCN=9045=45,MCN=MCN,在MCN和MCN中,MCNMCN(SAS),MN=MN,在RtMNB中,BM2+BN2=MN2,AM2+BN2=MN2;(4)设AM=x,点N的坐标是(8,0),AN=8,BN=128=4,MN=8x,由(3)的结论,x2+42=(8x)2,解得x=3,AM=3,MN=83=5,点M的坐标(3,0);设直线CM的解析式为y=kx+b,点C(6,6),M(3,0),解得,设直线CM的解析式为y=2x6;(5)如图,ABC是等腰直角三角形,CAB=CBA=45,把BCN绕点C顺时针旋转90得到ACN,由旋转的性质得,AN=BN,CN=CN,CAN=CBN=135,MAN=13545=90,点N在y轴上,MCN=45,MCN=9045=45,MCN=MCN,在MCN和MCN中,MCNMCN(SAS),MN=MN,在RtAMN中,AM2+AN2=MN2,AM2+BN2=MN27在平面直角坐标系中,点P从原点O出发,每次向上平移2个单位长度或向右平移1个单位长度(1)实验操作:在平面直角坐标系中描出点P从点O出发,平移1次后,2次后,3次后可能到达的点,并把相应点的坐标填写在表格中:P从点O出发平移次数可能到达的点的坐标1次(0,2),(1,0)2次3次(2)观察发现:任一次平移,点P可能到达的点在我们学过的一种函数的图象上,如:平移1次后在函数y=2x+2的图象上;平移2次后在函数y=2x+4的图象上由此我们知道,平移n次后在函数y=2x+2n的图象上(请填写相应的解析式)(3)探索运用:点P从点O出发经过n次平移后,到达直线y=x上的点Q,且平移的路径长不小于50,不超过56,求点Q的坐标解:(1)如图所示:P从点O出发平移次数可能到达的点的坐标1次2次(0,4),(1,2),

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论