




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初三二次函数集锦一解答题(共30小题)1如图,已知直线y=kx6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,4)为抛物线的顶点,点B在x轴上(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使POB与POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且ABQ为直角三角形,求点Q的坐标2如图,在平面直角坐标系中,直线y=3x3与x轴交于点A,与y轴交于点C抛物线y=x2+bx+c经过A,C两点,且与x轴交于另一点B(点B在点A右侧)(1)求抛物线的解析式及点B坐标;(2)若点M是线段BC上一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E求ME长的最大值;(3)试探究当ME取最大值时,在x轴下方抛物线上是否存在点P,使以M,F,B,P为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由3已知抛物线y=x2+bx+c的顶点为P,与y轴交于点A,与直线OP交于点B(1)如图1,若点P的横坐标为1,点B的坐标为(3,6),试确定抛物线的解析式;(2)在(1)的条件下,若点M是直线AB下方抛物线上的一点,且SABM=3,求点M的坐标;(3)如图2,若点P在第一象限,且PA=PO,过点P作PDx轴于点D将抛物线y=x2+bx+c平移,平移后的抛物线经过点A、D,该抛物线与x轴的另一个交点为C,请探究四边形OABC的形状,并说明理由4如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0)抛物线y=x2+bx+c经过点A、C,与AB交于点D(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,CPQ的面积为S求S关于m的函数表达式;当S最大时,在抛物线y=x2+bx+c的对称轴l上,若存在点F,使DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由5如图,点A(2,0)、B(4,0)、C(3,3)在抛物线y=ax2+bx+c上,点D在y轴上,且DCBC,BCD绕点C顺时针旋转后两边与x轴、y轴分别相交于点E、F(1)求抛物线的解析式;(2)CF能否经过抛物线的顶点?若能,求出此时点E的坐标;若不能,说明理由;(3)若FDC是等腰三角形,求点F的坐标6如图(1),在平面直角坐标系中,矩形ABCO,B点坐标为(4,3),抛物线y=x2+bx+c经过矩形ABCO的顶点B、C,D为BC的中点,直线AD与y轴交于E点,与抛物线y=x2+bx+c交于第四象限的F点(1)求该抛物线解析式与F点坐标;(2)如图(2),动点P从点C出发,沿线段CB以每秒1个单位长度的速度向终点B运动;同时,动点M从点A出发,沿线段AE以每秒个单位长度的速度向终点E运动过点P作PHOA,垂足为H,连接MP,MH设点P的运动时间为t秒问EP+PH+HF是否有最小值?如果有,求出t的值;如果没有,请说明理由若PMH是等腰三角形,请直接写出此时t的值7如图,RtOAB如图所示放置在平面直角坐标系中,直角边OA与x轴重合,OAB=90,OA=4,AB=2,把RtOAB绕点O逆时针旋转90,点B旋转到点C的位置,一条抛物线正好经过点O,C,A三点(1)求该抛物线的解析式;(2)在x轴上方的抛物线上有一动点P,过点P作x轴的平行线交抛物线于点M,分别过点P,点M作x轴的垂线,交x轴于E,F两点,问:四边形PEFM的周长是否有最大值?如果有,请求出最值,并写出解答过程;如果没有,请说明理由(3)如果x轴上有一动点H,在抛物线上是否存在点N,使O(原点)、C、H、N四点构成以OC为一边的平行四边形?若存在,求出N点的坐标;若不存在,请说明理由8如图,抛物线y=x22x3与x轴交于A、B两点(点A在点B的左侧),直线l与抛物线交于A,C两点,其中点C的横坐标为2(1)求A,B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点(P与A,C不重合),过P点作y轴的平行线交抛物线于点E,求ACE面积的最大值;(3)若直线PE为抛物线的对称轴,抛物线与y轴交于点D,直线AC与y轴交于点Q,点M为直线PE上一动点,则在x轴上是否存在一点N,使四边形DMNQ的周长最小?若存在,求出这个最小值及点M,N的坐标;若不存在,请说明理由(4)点H是抛物线上的动点,在x轴上是否存在点F,使A、C、F、H四个点为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的F点坐标;如果不存在,请说明理由9已知抛物线y=ax2+bx+c的顶点为(1,0),且经过点(0,1)(1)求该抛物线对应的函数的解析式;(2)将该抛物线向下平移m(m0)个单位,设得到的抛物线的顶点为A,与x轴的两个交点为B、C,若ABC为等边三角形求m的值;设点A关于x轴的对称点为点D,在抛物线上是否存在点P,使四边形CBDP为菱形?若存在,写出点P的坐标;若不存在,请说明理由10已知二次函数y=ax2+bx2的图象与x轴交于A、B两点,与y轴交于点C,点A的坐标为(4,0),且当x=2和x=5时二次函数的函数值y相等(1)求实数a、b的值;(2)如图1,动点E、F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒个单位长度的速度沿射线AC方向运动当点E停止运动时,点F随之停止运动设运动时间为t秒连接EF,将AEF沿EF翻折,使点A落在点D处,得到DEF是否存在某一时刻t,使得DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由设DEF与ABC重叠部分的面积为S,求S关于t的函数关系式;11如图,已知抛物线y=ax2+bx+c(a0)的对称轴为直线x=1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=1上的一个动点,求使BPC为直角三角形的点P的坐标12如图,抛物线y=ax2(2a+1)x+b的图象经过(2,1)和(2,7)且与直线y=kx2k3相交于点P(m,2m7)(1)求抛物线的解析式;(2)求直线y=kx2k3与抛物线y=ax2(2a+1)x+b的对称轴的交点Q的坐标;(3)在y轴上是否存在点T,使PQT的一边中线等于该边的一半?若存在,求出点T的坐标;若不存在请说明理由13如图1,抛物线y=ax2+bx+3(a0)与x轴、y轴分别交于点A(1,0)、B(3,0)、点C三点(1)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC、BD试问,在对称轴左侧的抛物线上是否存在一点P,满足PBC=DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)如图2,在(2)的条件下,将BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为BOC在平移过程中,BOC与BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?14如图,在平面直角坐标系中,直线y=x与抛物线y=x2+bx+c交于A、B两点,点A在x轴上,点B的横坐标为8(1)求该抛物线的解析式;(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PEAB于点E设PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值;连接PA,以PA为边作图示一侧的正方形APFG随着点P的运动,正方形的大小、位置也随之改变当顶点F或G恰好落在y轴上时,直接写出对应的点P的坐标15已知:m、n是方程x26x+5=0的两个实数根,且mn,抛物线y=x2+bx+c的图象经过点A(m,0)、B(0,n)(1)求这个抛物线的解析式;(2)设(1)中抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C、D的坐标和BCD的面积;(注:抛物线y=ax2+bx+c(a0)的顶点坐标为(3)P是线段OC上的一点,过点P作PHx轴,与抛物线交于H点,若直线BC把PCH分成面积之比为2:3的两部分,请求出P点的坐标16如图,在平面直角坐标系中,点O是原点,点A的坐标为(4,0),以OA为一边,在第一象限作等边OAB(1)求点B的坐标;(2)求经过O、A、B三点的抛物线的解析式;(3)直线y=x与(2)中的抛物线在第一象限相交于点C,求点C的坐标;(4)在(3)中,直线OC上方的抛物线上,是否存在一点D,使得OCD的面积最大?如果存在,求出点D的坐标和面积的最大值;如果不存在,请说明理由17如图,二次函数的图象经过点A(4,0),B(4,4),且与y轴交于点C(1)试求此二次函数的解析式;(2)试证明:BAO=CAO(其中O是原点);(3)若P是线段AB上的一个动点(不与A、B重合),过P作y轴的平行线,分别交此二次函数图象及x轴于Q、H两点,试问:是否存在这样的点P,使PH=2QH?若存在,请求出点P的坐标;若不存在,请说明理由18如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,1),抛物线经过点B,且与直线l的另一个交点为C(4,n)(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0t4)DEy轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2)若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将AOB绕点M沿逆时针方向旋转90后,得到A1O1B1,点A、O、B的对应点分别是点A1、O1、B1若A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标19在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A(1,0),B(3,0)两点,与y轴交于点C(1)求抛物线的解析式;(2)设抛物线的顶点为D,点P在抛物线的对称轴上,且APD=ACB,求点P的坐标;(3) 点Q在直线BC上方的抛物线上,点Q到直线BC的距离最远,求点Q坐标20如图,直线y=kx+b分别交y轴、x 轴于A(0、2)、B(4、0)两点,抛物线y=x2+bx+c过A、B两点(1)求直线和抛物线的解析式;(2)设N(x、y)是(1)所得抛物线上的一个动点,过点N作直线MN垂直x轴交直线AB于点M,若点N在第一象限内试问:线段MN的长度是否存在最大值?若存在,求出它的最大值及此时x的值;若不存在,请说明理由;(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标21如图,菱形ABCD的边长为6且DAB=60,以点A为原点、边AB所在的直线为x轴且顶点D在第一象限建立平面直角坐标系动点P从点D出发沿折线DCB向终点B以2单位/每秒的速度运动,同时动点Q从点A出发沿x轴负半轴以1单位/秒的速度运动,当点P到达终点时停止运动,运动时间为t,直线PQ交边AD于点E(1)求出经过A、D、C三点的抛物线解析式;(2)是否存在时刻t使得PQDB,若存在请求出t值,若不存在,请说明理由;(3)设AE长为y,试求y与t之间的函数关系式;(4)若F、G为DC边上两点,且点DF=FG=1,试在对角线DB上找一点M、抛物线ADC对称轴上找一点N,使得四边形FMNG周长最小并求出周长最小值22如图,直线y=x+2与抛物线y=ax2+bx+6(a0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PCx轴于点D,交抛物线于点C(1)求抛物线的解析式;(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)求PAC为直角三角形时点P的坐标23如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由24在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A,B,与y轴交于点C,直线y=x+4经过A,C两点(1)求抛物线的解析式;(2)在AC上方的抛物线上有一动点P如图1,当点P运动到某位置时,以AP,AO为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点P的坐标;如图2,过点O,P的直线y=kx交AC于点E,若PE:OE=3:8,求k的值25如图,抛物线y=ax2+bx+c经过A(1,0)、B(4,0)、C(0,3)三点(1)求抛物线的解析式;(2)如图,在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由(3)如图,点Q是线段OB上一动点,连接BC,在线段BC上是否存在这样的点M,使CQM为等腰三角形且BQM为直角三角形?若存在,求点M的坐标;若不存在,请说明理由26如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=x2+4x刻画,斜坡可以用一次函数y=x刻画(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得POA,求POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),MOA的面积等于POA的面积请直接写出点M的坐标27已知:抛物线l1:y=x2+bx+3交x轴于点A,B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,)(1)求抛物线l2的函数表达式;(2)P为直线x=1上一动点,连接PA,PC,当PA=PC时,求点P的坐标;(3)M为抛物线l2上一动点,过点M作直线MNy轴,交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值28已知抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,O是坐标原点,点A的坐标是(1,0),点C的坐标是(0,3)(1)求抛物线的函数表达式;(2)求直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025四川九洲光电科技股份有限公司招聘电子工程师等岗位27人笔试参考题库附带答案详解
- 2025中国移动校园招聘职位查看(甘肃地区)笔试参考题库附带答案详解
- 浙江宁波市北仑区气象灾害预警中心招聘编外人员笔试高频难、易错点备考题库及完整答案详解1套
- 重庆市合川中学2025届高三上学期暑假居家自学检测(开学)英语试卷(含答案无听力)
- 2024-2025学年度菏泽医学专科学校传统康复治疗技术期末试题预测试卷附完整答案详解(有一套)
- 哥特式玻璃窗纹样课件
- 2025年林木种苗考试题及答案
- 2025年新能源汽车自动驾驶法规与交通安全管理衔接报告
- 公司员工培训资料库
- 启益厂安全培训课件
- 2024年连云港东海县招聘社区工作者真题
- (零模)南昌市2025年高三年级九月测试语文试卷(含标准答案)
- 燃料电池催化剂研究报告
- 湖北省华大新高考联盟2026届高三上学期9月教学质量测评语文试题(含答案)
- 人工智能应用技术-教学大纲
- 虚拟货币挖矿管理办法
- 2025重庆市涪陵区马武镇人民政府选聘本土人才1人考试参考试题及答案解析
- 2025-2026学年地质版(2024)小学体育与健康三年级(全一册)教学设计(附目录P123)
- DB3302T1135-2022新建小区室内公共体育设施配置和管理规范
- 2025年装载机行业当前竞争格局与未来发展趋势分析报告
- 2025年飞行服务站无人机培训行业现状分析报告
评论
0/150
提交评论