高中数学(教案+课内预习学案+课内探究学案+课后练习与提高)1.2.1充分条件与必要条件 新人教A版选修11.doc_第1页
高中数学(教案+课内预习学案+课内探究学案+课后练习与提高)1.2.1充分条件与必要条件 新人教A版选修11.doc_第2页
高中数学(教案+课内预习学案+课内探究学案+课后练习与提高)1.2.1充分条件与必要条件 新人教A版选修11.doc_第3页
高中数学(教案+课内预习学案+课内探究学案+课后练习与提高)1.2.1充分条件与必要条件 新人教A版选修11.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1. 2.1充分条件与必要条件教学目标:正确理解充分条件、必要条件的概念;通过对充分条件和必要条件的概念理解和运用,培养学生逻辑思维能力和良好的思维品质。教学重点:理解充分条件和必要条件的概念.教学难点:理解必要条件的概念.教学过程:一、复习准备:写出下列命题的逆命题、否命题及逆否命题,并判断它们的真假:(1)若,则;(2)若时,则函数的值随的值的增加而增加.二、讲授新课:1. 认识“”与“”:在上面两个命题中,命题(1)为假命题,命题(2)为真命题. 也就是说,命题(1)中由“”不能得到“”,即;而命题(2)中由“”可以得到“函数的值随的值的增加而增加”,即函数的值随的值的增加而增加.练习:教材p10第1题2. 教学充分条件和必要条件:若,则是的充分条件,是的必要条件.上述命题(2)中“”是“函数的值随的值的增加而增加”的充分条件,而“函数的值随的值的增加而增加”则是“”的必要条件.例1:下列“若,则”形式的命题中,哪些命题中的是的充分条件?(1)若,则;(2)若,则;(3)若,则为减函数;(4)若为无理数,则为无理数.(5)若,则.(学生自练个别回答教师点评) 解析: 若,则是的充分条件解:(1)(2)(3)是的充分条件。点评:判断是不是的充分条件,可根据若则的真假进行。变式练习:p10页第2题例2:下列“若,则”形式的命题中,哪些命题中的是的必要条件?(1)若,则;(2)若两个三角形的面积相等,则这两个三角形全等;(3)若,则;(4)若,则.(学生自练个别回答教师点评)解析: 若,则是的必要条件。解:(1)(4)是的必要条件。点评:判断是不是的必要条件,可根据若则的真假进行。变式练习:p10页第3题例3:判断下列命题的真假:(1)“是6的倍数”是“是2的倍数”的充分条件;(2)“”是“”的必要条件.(学生自练个别回答学生点评)解析:先写成“若,则”形式,再判断真假。 解:(1)(2)都是真命题。 点评;对于涉及充分与必要条件判断的问题,必须以准确充分理解充分条件与必要条件的概念为基础。.变式练习:p10页第4题.3. 小结:充分条件与必要条件的概念的理解。三、巩固练习:作业:教材p12页第1、2题121 充分条件和必要条件课前预习学案一、预习目标:理解充分条件、必要条件的概念二、预习内容:充分条件、必要条件的概念 例1 例2三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容 课内探究学案一、学习目标:1、理解充分条件、必要条件的意义2、能进行充分条件、必要条件的判断学习重点:充分条件、必要条件概念的理解难点:理解必要条件的概念.二、学习过程:学生探究过程:1练习与思考写出下列两个命题的条件和结论,并判断是真命题还是假命题?(1)若x a2 + b2,则x 2ab, (2)若ab 0,则a 0.学生容易得出结论;命题(1)为真命题,命题()为假命题置疑:对于命题“若p,则q”,有时是真命题,有时是假命题如何判断其真假的?答:看p能不能推出q,如果p能推出q,则原命题是真命题,否则就是假命题给出定义命题“若p,则q” 为真命题,是指由p经过推理能推出q,也就是说,如果p成立,那么q一定成立换句话说,只要有条件p就能充分地保证结论q的成立,这时我们称条件p是q成立的充分条件一般地,“若p,则q”为真命题,是指由p通过推理可以得出q这时,我们就说,由p可推出q,记作:pq定义:如果命题“若p,则q”为真命题,即p q,那么我们就说p是q的充分条件;q是p必要条件上面的命题(1)为真命题,即x a2 + b2x 2ab,所以“x a2 + b2”是“x 2ab”的充分条件,“x 2ab”是“x a2 + b2”的必要条件3例题分析:例:下列“若p,则q”形式的命题中,那些命题中的p是q的充分条件?(1)若x 1,则x2 4x 3 0;(2)若f(x) x,则f(x)为增函数;(3)若x为无理数,则x2为无理数解析:要判断p是否是q的充分条件,就要看p能否推出q解略例:下列“若p,则q”形式的命题中,那些命题中的q是p的必要条件?(1)若x y,则x2 y2;(2)若两个三角形全等,则这两个三角形的面积相等; (3)若a b,则acbc分析:要判断q是否是p的必要条件,就要看p能否推出q解略三、反思总结充分、必要的定义在“若p,则q”中,若pq,则p为q的充分条件,q为p的必要条件注:(1)条件是相互的; (2)p是q的什么条件,有四种回答方式: p是q的充分而不必要条件; p是q的必要而不充分条件; p是q的充要条件; p是q的既不充分也不必要条件四、当堂检测:p10 练习 第1、2、3、4题 课后练习与提高1、 指出下列命题中p 是q的什么条件? p:x1, q: x21 p:四边形的四个角相等 q:四边形是正方形 p:两直线垂直 q:两直线的斜率的积为-12、指出下列命题中p 是q的什么条件?填(充分不必要条件、必要不充分条

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论