高中数学 第二章《函数的单调性》教学课件 北师大版必修1.ppt_第1页
高中数学 第二章《函数的单调性》教学课件 北师大版必修1.ppt_第2页
高中数学 第二章《函数的单调性》教学课件 北师大版必修1.ppt_第3页
高中数学 第二章《函数的单调性》教学课件 北师大版必修1.ppt_第4页
高中数学 第二章《函数的单调性》教学课件 北师大版必修1.ppt_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3函数的单调性 1 初中学习过一次函数 二次函数 还记得函数f x x的图象特征吗 自左向右 图象是 即函数值随着x的增大而 函数f x x2的图象是 而且其图象在区间 0 内是 即函数值随x的增大而 在区间 0 内图象是 即函数值随x的增大而 2 从函数f x x2的图象上还可看出当x 0时 y 0是所有函数值中 而对于f x x2来说 x 0时 y 0是所有函数值中 答案 1 上升的增大抛物线下降的减小上升的增大2 最小的最大的 1 增函数与减函数的定义在函数y f x 的定义域内的一个区间a上 1 如果对于两数x1 x2 a 当x1 x2时 都有 那么 就称函数y f x 在区间a上是增加的 有时也称函数y f x 在区间a上是的 2 如果对于任意两数x1 x2 a 当x1 x2时都有 那么 就称函数y f x 在区间a上是减少的 有时也称函数y f x 在区间a上是的 任意 f x1 f x2 递增 f x1 f x2 递减 2 单调区间 单调性及单调函数 1 单调区间 如果y f x 在区间a上是或是 那么称为单调区间 在单调区间上 如果函数是增加的 那么它的图象是 如果函数是减少的 那么它的图象是 2 单调性 如果函数y f x 在定义域的某个子集上是或是 那么就称函数y f x 在这个上具有单调性 3 单调函数 如果函数y f x 在内是增加的或是减少的 那么分别称这个函数为或 统称为单调函数 增加的 减少的 a 上升的 下降的 增加的 减少的 子集 整个定义域 增函数 减函数 能否将增函数 减函数 定义中的 任意两个值x1 x2 改为 存在两个值x1 x2 虽然f 1 f 2 但f x 在 1 2 上并不递增 提示 不能 如图所示 函数单调性的判定或证明 思路点拨 解答本题只需按照函数单调递增的定义加以证明 根据定义证明函数的单调性可按如下步骤进行 1 取值 即设x1 x2是该区间内的任意两个值 且x1 x2 2 作差变形 即作差f x1 f x2 并通过因式分解 配方 有理化等方法 使其转化为易于判断正负的式子 3 定号 即确定f x1 f x2 的符号 4 判断 即根据定义得出结论 其中第二步是关键 在变形中一般尽量化为几个最简因式的积或几个完全平方的形式 1 证明函数在区间 0 上是增函数 证明 设x1 x2为区间 0 上的任意两个值 且x10 f x1 f x2 0 即f x1 f x2 故在区间 0 上是单调增函数 求函数的单调区间 如图所示的是定义在半开半闭区间 5 5 上的函数y f x 的图象 根据图象写出y f x 的单调区间 并指出在每一个单调区间上y f x 是增函数还是减函数 思路点拨 观察图象可知 函数y f x 在区间 5 5 上不具有单调性 但在区间 5 2 2 1 1 3 3 5 上具有单调性 解析 函数y f x 的单调区间有 5 2 2 1 1 3 3 5 其中y f x 在区间 5 2 1 3 上是减函数 在区间 2 1 3 5 上是增函数 1 利用图象研究函数的单调性是常用的解题方法 但要注意函数的定义域 2 写单调区间时 不连续的单调区间必须分开写 不能用 符号连接它们 如函数y 其定义域为 0 0 不能笼统地说 函数在 0 0 上单调递减 而只能说函数在 0 和 0 上递减 因为若在 0 0 jp4 上递减 对 1f 1 而事实上f 1 f 1 3 求函数的单调区间不能忽视定义域 单调区间应是定义域的子集 2 求下列函数的单调区间 1 f x x2 3x 2 2 f x 3 x 函数单调性的应用 已知函数 x 2 5 1 判断该函数在区间 2 5 上的单调性 并给予证明 2 求该函数在区间 2 5 上的最大值与最小值 思路点拨 解答本题可先利用定义证明f x 的单调性 在此基础上利用单调性解答最值 1 运用函数单调性求最值是求解函数最值问题的重要方法 特别是当函数图象不好作或作不出来时 单调性几乎成为首选方法 2 函数的最值与单调性的关系 若函数在闭区间 a b 上是减函数 则f x 在 a b 上的最大值为f a 最小值为f b 若函数在闭区间 a b 上是增函数 则f x 在 a b 上的最大值为f b 最小值为f a 1 解读函数单调性的定义 1 定义中的关键词 定义域i内某个区间d 即函数的单调区间是其定义域的子集 单调性是与 区间 紧密相关的 一个函数在不同区间可以有不同的单调性 对于 任意 都有 对于 即两个自变量x1 x2 必须取自给定的区间 任意 即不能用特殊值代替 都有 即只要x1 x2 就必须有f x1 f x2 或f x1 f x2 2 函数单调性的刻画 图形刻画 对于给定区间上的函数y f x 它的图象若从左向右连续上升 下降 则称函数在该区间上是单调递增 减 的 定性刻画 对于给定区间上的函数y f x 若函数值随自变量的增大而增大 减小 则称函数在该区间上是单调递增 减 的 2 判定函数单调性的常见方法 1 定义法 这是证明或判定函数单调性的常用方法 2 图象法 根据函数图象的升 降情况进行判断 3 直接法 运用已知的结论 直接得到函数的单调性 如一次函数 二次函数 反比例函数的单调性均可直接说出 直接判断函数的单调性 可用到以下结论 函数y f x 与函数y f x 的单调性相反 函数f x 恒为正或恒为负时 函数y 与y f x 的单调性相反 在公共区间内 增函数 增函数 增函数 增函数 减函数 增函数等 错因 出现上述错误解法的原因主要为不清楚抽象函数的定义域 在抽象函数中满足函数关系式的自变量首先应在定义域内 这是一个极易被忽视也是极易出现错误的地方 也就是说变量x首先应满足 1 x 2 1 1 1 x 1 在此基础上利用单调性的定义将 f 符号脱掉 1 函数y x2的单调增区间为 a 0 b 0 c 0 d 答案 a 2 已知函数y f x 定义在 2 1 上 且有f 1 f 0 则下列判断正确的是 a f x 必为 2 1 上的单调增函数 b f x 必为 2 1 上的单调减函数 c f x 不是 2 1 上的单调减函数 d f x 不是 2 1 上的单调增函数 解析 不能根据某两个点处的函数值的大小确定函数的单调性 答案 d 3 如图所示 函数y f x 的单调递增区间有 递减区间有 解析 结合图象可知 函数y f x 在区间 2 0 1 上是减函数 在 2 0 及 1 上是增函数 答案 2 0 1 2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论