免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课时跟踪检测(十)对数与对数函数一、选择题1(2015内江三模)lg8()a.bc d42若函数yf(x)是函数yax(a0,且a1)的反函数,且f(2)1,则f(x)()alog2x b.clogx d2x23(2014天津高考)函数f(x)log(x24)的单调递增区间是()a(0,) b(,0)c(2,) d(,2)4(2015福州模拟)函数ylg|x1|的图象是()5(2015长春质检)已知函数f(x)loga|x|在(0,)上单调递增,则()af(3)f(2)f(1) bf(1)f(2)f(3)bf(2)f(1)f(3) df(3)f(1)0且a1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明;(3)当a1时,求使f(x)0的x的解集12设x2,8时,函数f(x)loga(ax)loga(a2x)(a0,且a1)的最大值是1,最小值是,求a的值答案1选blg 8lg 10(23)4.2选af(x)logax,f(2)1,loga21.a2.f(x)log2x.3选d函数yf(x)的定义域为(,2)(2,),因为函数yf(x)是由ylogt与tg(x)x24复合而成,又ylogt在(0,)上单调递减,g(x)在(,2)上单调递减,所以函数yf(x)在(,2)上单调递增选d.4选a因为ylg|x1|当x1时,函数无意义,故排除b、d.又当x2或0时,y0,所以a项符合题意5选b因为f(x)loga|x|在(0,)上单调递增,所以a1,f(1)f(2)f(3)又函数f(x)loga|x|为偶函数,所以f(2)f(2),所以f(1)f(2)f(3)6.选a因为f(x)是周期为2的奇函数,奇函数的图象关于原点(0,0)对称,故函数yf(x)的图象也关于点(2,0)对称,先作出函数f(x)在(1,3)上的图象,左右平移即得到f(x)的草图如图所示,由图象可知f(x)关于点(k,0)(kz)对称,故正确;由yf(x)的图象可知y|f(x)|的周期为2,故正确;当x(1,0)时,22x3,f(2x)log2(1x)f(x),即f(x)log2(1x),故正确;yf(|x|)在(1,0)上为减函数,故错误7解析:令tx26x17(x3)288,ylogt为减函数,所以有logtlog83.答案:(,38.作出函数ylog2x的图象,将其关于y轴对称得到函数ylog2|x|的图象,再将图象向左平移1个单位长度就得到函数ylog2|x1|的图象(如图所示)由图知,函数ylog2|x1|的单调递减区间为(,1),单调递增区间为(1,)答案:(,1)(1,)9解析:f(f(4)f(24)log4162, log20时,f(x)lg lglg,令t(x)x,x0,则t(x)1,可知当x(0,1)时,t(x)0,t(x)单调递增,即在x1处取到最小值为2.由偶函数的图象关于y轴对称及复合函数的单调性可知错误,正确,正确,故答案为.答案:11解:(1)要使函数f(x)有意义则解得1x1时,f(x)在定义域(1,1)内是增函数,所以f(x)01,解得0x0的x的解集是(0,1)12解:由题意知f(x)(logax1)(logax2)(logx3logax2)2.当f(x)取最小值时,logax.又x2,8,a(0,1)f(x)是关于logax的二次函数,函数f(x)的最大值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 粮库安全生产试题及答案
- 中学生应急预案(3篇)
- 武汉市政治考试题及答案
- DB1306T 283-2025 蟾蜍养殖中防逃防天敌技术规程
- 2025年现代通信概论试卷及答案
- 2025年用户体验研究员人员岗位招聘面试参考试题及参考答案
- 2025年房产投资顾问岗位招聘面试参考题库及参考答案
- 奢侈品跨界合作模式分析-洞察与解读
- 2025年风险投资顾问岗位招聘面试参考题库及参考答案
- 翼城英语考试题型及答案
- 篮球交叉步持球突破教学设计-高二下学期体育与健康人教版
- 1到六年级古诗全部打印
- 转动机械找对轮找中心有图有公式
- BIM-建筑信息模型
- GB/T 22415-2008起重机对试验载荷的要求
- 中国地质大学武汉软件工程专业学位研究生实践手册
- 《投资银行》或《资本运营》风险投资业务课件
- DBJ50T-163-2021 既有公共建筑绿色改造技术标准 清晰正式版
- 低阶煤、褐煤干法制备气化用高浓度水煤浆技术
- GB∕T 37458-2019 城郊干道交通安全评价指南
- DB33_T 2301-2020番茄水肥一体化技术规程(高清正版)
评论
0/150
提交评论