高考数学第3章三角形中的几何计算解三角形的实际应用举例教师用书文.docx_第1页
高考数学第3章三角形中的几何计算解三角形的实际应用举例教师用书文.docx_第2页
高考数学第3章三角形中的几何计算解三角形的实际应用举例教师用书文.docx_第3页
高考数学第3章三角形中的几何计算解三角形的实际应用举例教师用书文.docx_第4页
高考数学第3章三角形中的几何计算解三角形的实际应用举例教师用书文.docx_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第七节三角形中的几何计算、解三角形的实际应用举例考纲传真能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题1仰角和俯角在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角(如图371)图3712方位角和方向角(1)方位角:从指北方向顺时针转到目标方向线的水平角,如B点的方位角为(如图371)(2)方向角:相对于某正方向的水平角,如南偏东30等1(思考辨析)判断下列结论的正误(正确的打“”,错误的打“”)(1)从A处望B处的仰角为,从B处望A处的俯角为,则,的关系为180.()(2)俯角是铅垂线与视线所成的角,其范围为.()(3)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系()(4)如图372,为了测量隧道口AB的长度,可测量数据a,b,进行计算()图372答案(1)(2)(3)(4)2(教材改编)海面上有A,B,C三个灯塔,AB10 n mile,从A望C和B成60视角,从B望C和A成75视角,则BC等于()【导学号:66482179】A10 n mileB n mileC5 n mile D5 n mileD如图,在ABC中,AB10,A60,B75,C45,BC5.3若点A在点C的北偏东30,点B在点C的南偏东60,且ACBC,则点A在点B的()【导学号:66482180】A北偏东15 B北偏西15C北偏东10 D北偏西10B如图所示,ACB90,又ACBC,CBA45,而30,90453015,点A在点B的北偏西15.图3734如图373,要测量底部不能到达的电视塔的高度,选择甲、乙两观测点在甲、乙两点测得塔顶的仰角分别为45,30,在水平面上测得电视塔与甲地连线及甲、乙两地连线所成的角为120,甲、乙两地相距500 m,则电视塔的高度是()【导学号:66482181】A100 m B400 mC200 m D500 mD设塔高为x m,则由已知可得BCx m,BDx m,由余弦定理可得BD2BC2CD22BCCDcosBCD,即3x2x25002500x,解得x500(m)图3745如图374,已知A,B两点分别在河的两岸,某测量者在点A所在的河岸边另选定一点C,测得AC50 m,ACB45,CAB105,则A,B两点的距离为()A50 mB25 mC25 mD50 mD因为ACB45,CAB105,所以B30.由正弦定理可知,即,解得AB50 m测量距离问题如图375,从气球A上测得正前方的河流的两岸B,C的俯角分别为67,30,此时气球的高是46 m,则河流的宽度BC约等于_m(用四舍五入法将结果精确到个位参考数据:sin670.92,cos670.39,sin370.60,cos370.80,1.73)图37560如图所示,过A作ADCB且交CB的延长线于D.在RtADC中,由AD46 m,ACB30得AC92 m.在ABC中,BAC673037,ABC18067113,AC92 m,由正弦定理,得,即,解得BC60(m)规律方法应用解三角形知识解决实际问题需要下列三步:(1)根据题意,画出示意图,并标出条件;(2)将所求问题归结到一个或几个三角形中(如本例借助方位角构建三角形),通过合理运用正、余弦定理等有关知识正确求解;(3)检验解出的结果是否符合实际意义,得出正确答案变式训练1江岸边有一炮台高30 m,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45和60,而且两条船与炮台底部连线成30角,则两条船相距_m.【导学号:66482182】 10如图,OMAOtan4530(m),ONAOtan303010(m),在MON中,由余弦定理得,MN10(m)测量高度问题(2015湖北高考)如图376,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30的方向上,行驶600 m后到达B处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD_m.图376100由题意,在ABC中,BAC30,ABC18075105,故ACB45.又AB600 m,故由正弦定理得,解得BC300 m.在RtBCD中,CDBCtan30300100(m)规律方法1.在测量高度时,要准确理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角2分清已知条件与所求,画出示意图;明确在哪个三角形内运用正、余弦定理,有序地解相关的三角形,并注意综合运用方程、平面几何、立体几何等知识 变式训练2如图377,从某电视塔CO的正东方向的A处,测得塔顶的仰角为60,在电视塔的南偏西60的B处测得塔顶的仰角为45,AB间的距离为35米,则这个电视塔的高度为_米图3775如图,可知CAO60,AOB150,OBC45,AB35米设OCx米,则OAx米,OBx米在ABO中,由余弦定理,得AB2OA2OB22OAOBcosAOB,即352x2x2cos150,整理得x5,所以此电视塔的高度是5米测量角度问题在海岸A处,发现北偏东45方向、距离A处(1)海里的B处有一艘走私船;在A处北偏西75方向、距离A处2海里的C处的缉私船奉命以10海里/小时的速度追截走私船同时,走私船正以10海里/小时的速度从B处向北偏东30方向逃窜,问缉私船沿什么方向能最快追上走私船?最少要花多长时间?解设缉私船t小时后在D处追上走私船,则有CD10t,BD10t.在ABC中,AB1,AC2,BAC120. 3分根据余弦定理,可得BC,由正弦定理,得sinABCsinBAC,ABC45,因此BC与正北方向垂直. 7分于是CBD120.在BCD中,由正弦定理,得sinBCD,BCD30,又,即,得t.当缉私船沿北偏东60的方向能最快追上走私船,最少要花小时. 12分规律方法解决测量角度问题的注意事项(1)首先应明确方位角或方向角的含义(2)分析题意,分清已知与所求,再根据题意画出正确的示意图,这是最关键、最重要的一步(3)将实际问题转化为解三角形的问题后,注意正弦、余弦定理的“联袂”使用图378变式训练3如图378,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救信息中心立即把消息告知在其南偏西30、相距20海里的C处的乙船,现乙船朝北偏东的方向沿直线CB前往B处救援,求cos的值解在ABC中,AB40,AC20,BAC120,由余弦定理得,BC2AB2AC22ABACcos 1202 800BC20. 4分由正弦定理,得sinACBsinBAC. 8分由BAC120,知ACB为锐角,则cosACB.由ACB30,得coscos(ACB30)cosACB cos30sinACB sin30. 12分思想与方法解三角形应用题的两种情形(1)已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解(2)已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论