




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2课时 方程的简单变形【知识与技能】1.理解并掌握方程的两个变形规则;2.使学生了解移项法则,即移项后变号,并且能熟练运用移项法则解方程;3.运用方程的两个变形规则解简单的方程.【过程与方法】通过对解方程过程的探讨,使学生获得解方程的步骤,体会数学中由特殊到一般的思想方法.【情感态度】通过本节的教学,应该达到使学生体会数学的价值的目的.【教学重点】运用方程的两个变形规则解简单的方程.【教学难点】运用方程的两个变形规则解简单的方程.一、 情境导入,初步认识1.等式有哪些性质?2.在4x-2=1+2x两边都减去_,得2x-2=1,两边再同时加上_,得2x=3,变形依据是_.3.在1/4x-1=2中两边乘以_,得x-4=8,两边再同时加上4,得x=12,变形依据分别是_.【教学说明】对等式的性质及利用性质进行变形的复习,为方程的变形打好基础.二、思考探究,获取新知1.方程是不是等式?2.你能根据等式的性质类比出方程的变形依据吗?【归纳结论】方程的两边都加上(或都减去)同一个数或同一个整式,方程的解不变.方程两边都乘以(或都除以)同一个不为零的数,方程的解不变.3.你能根据这些规则,对方程进行适当的变形吗?4.解下列方程:(1)x-5=7;(2)4x=3x-4.分析:(1)利用方程的变形规律,在方程x-5=7的两边同时加上5,即x -5+5=7+5,可求得方程的解.(2)利用方程的变形规律,在方程4x=3x-4的两边同时减去3x,即4x-3x=3x-3x-4,可求得方程的解.像上面,将方程中的某些项改变符号后,从方程的一边移到另一边的变形叫做移项.【教学说明】(1)上面两小题方程变形中,均把含未知数x的项,移到方程的左边,而把常数项移到了方程的右边.(2)移项需变号.5.解下列方程: (1)-5x=2; (2)3/2x=1/3;分析:(1)利用方程的变形规律,在方程-5x=2的两边同除以-5,即-5x(-5)= 2(-5) 可求得方程的解.(2)利用方程的变形规律,在方程3/2x=1/3的两边同除以3/2或同乘以2/3,即3/2x3/2=1/33/2(或3/2x2/3=1/32/3),可求得方程的解.解: (1)方程两边都除以-5,得x=-2/5.(2)方程两边都除以3/2,得 x=1/33/2=1/32/3,即x=2/9.方程两边同乘以2/3,得 x=1/32/3=2/9.即x=2/9.【归纳结论】上面两题的变形通常称作“将未知数的系数化为1” .上面两个解方程的过程,都是对方程进行适当的变形,得到x=a的形式.6.根据上面的例题,你能总结出解一元一次方程的一般步骤吗?【归纳结论】解方程的一般步骤是:移项;合并同类项;系数化为1.三、运用新知,深化理解1.教材第7页例3.2.下列方程变形错误的是( )A.2x+5=0得2x=-5B.5=x+3得x=-5-3C.-0.5x=3得x=-6D.4x=-8得x=-23.下列方程求解正确的是( )A.-2x=3,解得x=-2/3B.2/3x=5, 解得x=10/3C.3x-2=1,解得x=1 D.2x+3=1,解得x=24.方程-1/3x=2两边都_,得x=_.5.方程5x=6的两边都_,得x=_ .6.方程3x+1=4的两边都_得3x=3.7.方程2y-3=-1的两边都_得2y=2.8.下面是方程x+3=8的三种解法,请指出对与错,并说明为什么?(1)x+3=8=x=8-3=5;(2)x+3=8,移项得x=8+3,所以x=11;(3)x+3=8移项得x=8-3 , 所以x=5.9.解下列方程.(1)2x3=65;(2)1.3x +1.2-2x =1.2-2.7x.(3)3y-2=y+1+6y10.方程 2x13和方程2x-a0 的解相同,求a的值.11.已知y1=3x+2,y2=4-x.当x取何值时,y1与 y2互为相反数?【教学说明】通过练习,使学生熟练的利用方程的变形规则解方程.【答案】2.B 3.C 4.乘以-3 6.减1 7.加38.解:(1)这种解法是错的.变形后新方程两边的值和原方程两边的值不相等,所以解方程时不能连等;(2)这种解法也是错误的,移项要变号;(3)这种解法是正确的.9.分析:把方程中的比先化为分数,再解方程.解:(1) 2x3=65,2x/3=6/5,系数化为1x=6/52/3= 6/53/2= 9/5.(2) 1.3x+1.2-2x=1.2-2.7x,移项1.3x-2x+2.7x=1.2-1.2,合并同类项2x=0,系数化为1x=02=0.(3)3y-2=y+1+6y,合并同类项 3y-2=7y+1,移项 3y-7y=1+2,合并同类项-4y=3,系数化为1y=3(-4)=3 (-1/4) =-3/4 .10.解:2x132x3-12x2 x1因为,方程 2x13和方程2x-a0 的解相同所以,把x1代入2x-a0中得:21-a02-a0-a-2a2即,a的值为2.11.分析:y1与 y2互为相反数,即y1+y2=0.本题就转化为求方程3x+2+4-x=0的解.解:由题意得:3x+2+4-x=0,3x-x=-4-2,x=-3.所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年保健食品计划试题及答案
- 2025年验船师考试(C级船舶检验专业实务)测试题及答案一
- 2025年注册验船师资格考试(C级船舶检验法律法规)经典试题及答案二
- 2025年环境科学与可持续发展考试试题及答案
- 北京市门头沟区2024-2025学年八年级上学期期末考试英语试题及答案
- 北京市门头沟区2023-2024学年九年级上学期期末质量监测语文试题及答案
- 2025年英语四六级考试作文范文与技巧解析
- 校长建议课件
- 2025年殡仪馆服务流程优化与管理模拟题及解析
- 2025年招聘考试宝典从模拟题看项目经理的必-备知识
- 业财融合与价值创造课件
- 长沙市名校小升初分班考试数学试卷(含答案)
- 肺动脉栓塞护理查房
- 农村房地产转让合同协议
- 拉链专业工艺讲解
- 2025版抵押贷款抵押物抵押权登记及变更手续协议模板
- 《死亡医学证明(推断)书》培训试题(附答案)
- 护理核心制度2025年
- 华文版二年级上册-写字-书法
- 慢性根尖周炎病例分析
- 2025年初中学业水平考试生物试卷(附答案)
评论
0/150
提交评论