




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
探究化归与转化思想在高中数学中的应用湖北省宜城市第二高级中学 何婷婷摘要化归思想是中学数学最重要的思想方法之一。数学中的化归与转化思想方法,指在研究和解决有关数学问题时,通过某种转化过程,归结到一类已经解决或比较容易解决的问题,最终求得问题的解答的一种手段和方法。关键词 数学 化归思想 转化思想在高中数学教学中,我们时常会遇到这样一些问题,若要直接解决会较为困难,若通过问题的转化,归类就会使问题变得简单。这类问题的解决方法就是解决数学问题的重要思想方法之化归和转化的思想方法。 数学中的化归与转化思想方法,指在研究和解决有关数学问题时,通过某种转化过程,归结到一类已经解决或比较容易解决的问题,最终求得问题的解答的一种手段和方法。化归与转化的思想方法的特点是实现问题的规范化,模式化,以便应用已知的理论,方法和技巧达到问题的解决。在化归思维过程中,我们对原来问题中的条件进行了简化,分化,转化,特殊化的变形,最后将原问题归结为简单的,熟悉的问题而得到解决。因此,我们化归的方向应该是由未知到已知,由难到易,由繁到简。世界数学大师波利亚强调:“不断的变换你的问题”“我们必须一再变化它,重新叙述它,变换它,直到最后成功地找到某些有用的东西为止”,他认为解题的过程就是“转化”,的过程。因此,“转化”是解数学题的重要思想方法之一。由于转化具有多向性,层次性和重复性的特点,为了实施有效的转化,既可以变更问题的条件,也可以变更问题的结论;既可以变换问题的内部结构,又可以变换问题的外部形式,这就是多向性。转化原则既可应用于沟通数学与各分支学科的联系,从宏观上实现学科间的转换,又能调动各种方法与技术,从微观上解决多种具体问题,这是转化的层次性。而解决问题可以多次的使用转化,使问题逐次达到规范化,这就是转化原则应用的重复性。在高考中,转化与化归思想占有相当重要的地位,掌握好化归与转化思想的两大特点,学会在解题时注意依据问题本身所提供的信息,利用动态思维,去寻求有利于问题解决的化归与转化的途径和方法,对学好数学是很有帮助的。 在中学数学中,常见的化归基本形式有:1、数与数之间的转化。例如计算某个算式得出数值;化简某个解析式得出结果;变形所给出的方程求解;变形所给的不等式求出解集以及函数、方程、不等式之间的互相转化等等。2、形与形之间的转化。比如:利用图象变换的知识作出函数图象;利用分割、补形、折叠、展开,作辅助线,辅助面处理空间图形或平面图形,等等。包括把立体问题化归为平面问题。例2.如图,正三棱锥P-ABC中,各条棱的长都是2,E是侧棱PC的中点,D是侧棱PB上任一点,求ADE的最小周长。3、数与形之间的转化。数与形之间的转化主要是依据函数与其图象的关系;复数及其运算的几何意义;以及解析几何中曲线与方程的概念等等进行转化。分析:这是含有四个无理式的不等式证明题,难以入手,可应用化归方法。注意到左边的四个无理式的结构与勾股定理相类似,由此想到,设法化归为几何问题。这容易得到化归一:构造如图3的正方形,可以说不等式关系不证自明。由此化归的思路,进一步考虑到两点间的距离这一关键,又可得到化归二:从第二种化归得到的解法,我们同时得出原问题的条件:0a1,0b1是多余的,认识进一步深化。A1,0B1是多余的,认识进一步深化。 4、实际问题与数学模型之间的转化。数学模型是从现实世界中抽象出来的,是对客观事物的某些属性的一个近似的反映,但对解决实际问题而言,数学模型却是深刻,正确、完善地反映着现实。因此,把所考察的实际问题,化归为数学问题,构造相应的数学模型,通过对数学模型的研究,使实际问题得以解决,充分地体现了“用数学”的意识和能力。比如以上所举的哥尼斯堡的七桥问题。化归思想方法的主要特点是它的灵活性和多样性。一个数学问题,组成主要元素之间的相互依存和相互联系的形式是可变的,其形式并非唯一,而是多种多样。所以应用数学变换的方法去解决有关数学问题时,就没有一个统一的模式可以遵循。因此,我们必须根据问题本身提供的信息,利用动态的思维,具体问题具体分析,去寻求有利于问题解决的化归途径和方法。在中学数学中,应用化归思想方法解题应注意三个点:一.注意紧盯化归目标,保证化归的有效性、规范性化归作为一种思想方法,应包括化归的对象、化归的目标、以及化归的方法、途径三个要素。因此,化归思想方法的实施应有明确的对象、设计好目标、选择好方法。而设计目标是问题的关键。设计化归目标时,总是以课本中那些基础知识、基本方法在应用上已形成固定的问题(通常称为规范性问题)为依据,而把要解决的问题化归为成规律问题(即问题的规范化)。化归能不能如期完成,与化归方法的选择有关,同时还要考虑到化归目标的设计与化归方法的可行性、有效性。因此,在解题过程中,始终必须紧紧盯住化归的目标,即始终应该考虑这样的问题:怎样才能达到解原问题的目的。在这个大前提下,实施的化归才是卓有成效的,盲目地选择化归的方向与方法必将走入死胡同。说明解题犹如打仗,需要冲破道道难关,直奔解题目标,而盯住目标,求什么就解什么,有助于最终形成解题思维链。二.注意转化的等价性,保证逻辑上的正确化归包括等价化归和非等价化归,在中学数学中的化归多为等价化归,等价化归要求转化过程中的前因后果既是充分的,又是必要的,以保证转化后的结果为原题的结果。三、注意转化的多样性,设计合理的转化方案在转化过程中,同一转化目标的达到,往往可能采取多种转化途径和方法。因此研究设计合理、简捷的转化途径是十分必要的,必须避免什么问题都死搬硬套,造成繁难不堪。说明这个例子说明设计合理转化方案的重要性,目标的转换与方法转换是相辅相成又互相制约的,但其目的却是一致的,那就是通过化归达到以简驭繁的最终目的。以上的例题,从一个侧面体现化归思想方法在中学数学解题中的重要地位。利用化归思想解题时,转化的途径和方法不一定相同,但有一个共同的规律,就是在待解决的问题和已解问题之间架起一个联系的桥梁,这就是知识之间的“关系键”,这就要求我们在学习数学的过程中,要不断地构建知识结构,形成知识网络,要领悟蕴含在数学内容之中的数学思想方法,这些都是提高数学解题能力的条件和基础。化归与转化常遵循以下几个原则(1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验和问题来解决。(2)简单化原则:将复杂的问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据。(3)和谐化原则:化归问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐的形式,或者转化命题,使其推演有利于运用某种数学方法或其方法符合人们的思维规律。(4)直观化原则:将比较抽象的问题转化为比较直观的问题来解决。(5)正难则反原则:当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解。最后,还必须说明,化归思想是中学数学解题的重要思想方法,但并非万能的方法,即并不是所有的问题都可以通过化归而得到解决的。化归思想的成功应用是以“数学发现”为前提的。因此,我们不能只停
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 制作及版权许可协议
- 2024-2025学年广东省河源市源城区六年级下学期4月期中英语试卷(含答案)
- 企业财务报表分析工具包
- 文言文课堂设计:运用情境教学法提升学生文言文阅读能力
- 2025年教师招聘之《幼儿教师招聘》检测卷包含答案详解(研优卷)
- 黑水县2025年度公开招聘社区工作者的(7人)考前自测高频考点模拟试题及参考答案详解一套
- 肉鸡场安全培训内容记录课件
- 安全知识培训内容课件
- 新质生产力分析框架与应用模板
- 做元宵节过程作文(15篇)
- 智慧工业园区AI大模型数字化平台建设方案
- 乒乓球基础教学课件
- 电力营销稽查培训课件
- 公司待办任务管理办法
- 点亮“睛”彩未来守护挺拔身姿-儿童健康知识讲座
- 玉竹栽培技术课件
- 绿色金融培训课件
- 煤矿掘进科培训课件
- 2026《衡中学案》高考一轮总复习 生物学 全书
- 《教室不乱跑》课件
- 2025混凝土建材购销合同范本
评论
0/150
提交评论