




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.5一元一次不等式与一次函数导学案(第1课时)学习目标:1、了解一元一次不等式与一次函数的关系.2、会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较。3、通过一元一次不等式与一次函数的图象之间的结合,培养数形结合意识。学习重点: 会用一次函数图象的性质解一元一次不等式;学习难点: 运用函数图象,数形结合解一元一次不等式课前预习:1、一般的,如果y=kx+b (k,b为常数,k0),那么y叫做x的_。2、一次函数y=kx+b图像是过_和_两点的一条直线。 3、对于y=kx+b(k0,k,b为常数)当y=0时,变形为kx+b=0,就形成了_.当y0,或y0或kx+b0,就形成了_.一、自主学习1、解答下列问题,思考问题间的联系?解不等式2x53x+10当自变量x为何值时,函数y=2x4的值大于0?2、试将下列解不等式转化为函数的问题:解不等式2x+40可看作:当x2时,函数y=的函数值大于0.解不等式3x+20可看作:当x时,函数的函数值小于0.解不等式5x+40或ax+b0(或ax+b0)可看作当一次函数y=ax+b的函数值大于0(或小于0)时,求相应的。合作探究:探究点一:利用一次函数图像来求不等式的解集 例1、作出函数y=2x5的图象,观察图象回答下列问题(1)x取哪些值时,2x50?(2)x取哪些值时,2x50?(3)x取哪些值时,2x53?【小结】:运用数形结合的思想,要求2x50的解集就是找X轴_方图像对应的自变量取值要求2x50的解集就是找X轴_方图像对应的自变量取值。、跟踪练习1:作出函数y1=2x4,并观察图象回答下列问题:(1)x取何值时,2x40?(2)x取何值时,2x40?跟踪练习2:已知一次函数y=kx+3的图像如图所示,则不等式kx+30的解集是_3yxO1.5【小结】:运用数形结合的思想,要求kx+30的解集是: ; 不等式-2x+60的解集是: .学习目标:1解一元一次不等式可以看作是:当一次函数值大于(或小于)0时,求自变量相应的取值范围2.会根据一次函数图像求一元一次不等式的解集。学习重点:一次函数与一元一次不等式的关系。学习难点:利用一次函数图像确定一元一次不等式的解集。学习过程:一、自主学习1、解答下列问题,思考问题间的联系?解不等式3x153x+10当自变量x为何值时,函数y=2x4的值大于0?2、试将下列解不等式转化为函数的问题:解不等式2x+40可看作:当x2时,函数y=的函数值大于0.解不等式3x+20可看作:当x时,函数的函数值小于0.解不等式5x+40或ax+b0(或ax+b0)可看作当一次函数y=ax+b的函数值大于0(或小于0)时,求相应的。二、合作探究1:已知不等式3x60解不等式3x60,可看作:当x时,求函数的函数值用画函数图象的方法解不等式3x60,即y0;x时,3x66,即y6,即y6;2:用画函数图象的方法解不等式5x+42x+10解法1:原不等式可化为0y0,当x时,x+1y2,当x时,y10(或kx+b0(或kx+b1Bx1Cx1Dx16已知直线y=2x+k与x轴的交点为(-2,0),则关于x的不等式2x+k-2Bx-2Cx0(a0)的解集是x12的解集是_10已知关于x的不等式kx-20(k0)的解集是x-3,则直线y=-kx+2与x轴的交点是_11已知不等式-x+53x-3的解集是x2,则直线y=-x+5与y=3x-3的交点坐标是_12.某单位需要用车,准备和一个体车主或一国有出租公司其中的一家签订合同,设汽车每月行驶xkm,应付给个体车主的月租费是y元,付给出租车公司的月租费是y1元,y2元,y分别与x之间的函数关系图象是如下图所示的两条直线,观察图象,回答下列问题:(1)每月行驶的路程在什么范围内时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 销售合同管理工具合同条款审查及执行追踪版
- (正式版)DB15∕T 3253.1-2023 《食品生产加工小作坊生产规范 第1部分:管理要求》
- 道条考试题及答案
- 南通中医院护理面试题库及答案
- 历年护理副主任考试题库及答案
- 内部审批与签字标准操作模板
- 市场调查分析与营销策略工具集
- 企业日常运营管理模板系统
- 文言文诵读技巧指导
- 医疗安全培训通讯课件
- DB34T 4961-2024农村饮用水安全卫生评价
- 数学与体育学科的跨学科教学尝试
- 新生职业生涯规划教育
- DB13-T 6056-2025 涉路工程技术评价规范
- 《继电器原理及其应用》课件
- 饮料质量安全管理制度
- 风险管控制度
- 一年级道法集体教研记录
- 两癌筛查工作总结
- 溶液及其应用教学设计-2024-2025学年九年级化学人教版(2024)下册
- 网上不良信息的侵害及预防
评论
0/150
提交评论