全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三角形全等的判定(三)学习目标1掌握三角形全等的“角边角”“角角边”条件2能运用全等三角形的条件,解决简单的推理证明问题3、激情投入,精彩展示。教学重点已知两角一边的三角形全等探究教学难点灵活运用三角形全等条件证明教学过程复习1、到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?三种:定义;SSS;SAS2在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?创设情境问题:一张教学用的三角形硬纸板不小心被撕坏了,如图,你能制作一张与原来同样大小的新教具?能恢复三角形的原貌吗?探究1:随意画一个三角形ABC,能不能作一个ABC,使A=A、B=B、AB=AB呢?先用量角器量出A与B的度数,再用直尺量出AB的边长画线段AB,使AB=AB分别以A、B为顶点,AB为一边作DAB、EBA,使DAB=CAB,EBA=CBA射线AD与BE交于一点,记为C即可得到ABC将ABC与ABC重叠,发现两三角形全等两角和它们的夹边对应相等的两三角形全等(可以简写成“角边角”或“ASA”)思考:在一个三角形中两角确定,第三个角一定确定我们是不是可以不作图,用“ASA”推出“两角和其中一角的对边对应相等的两三角形全等”呢?探究问题2:如图,在ABC和DEF中,A=D,B=E,BC=EF,ABC与DEF全等吗?能利用角边角条件证明你的结论吗?证明:A+B+C=D+E+F=180A=D,B=EA+B=D+EC=F在ABC和DEF中ABCDEF(ASA)两个角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)典例分析:例如下图,D在AB上,E在AC上,AB=AC,B=C求证:AD=AE分析AD和AE分别在ADC和AEB中,所以要证AD=AE,只需证明ADCAEB即可证明:在ADC和AEB中所以ADCAEB(ASA)所以AD=AE大显身手(一)课本练习1、2课时小结我们有五种判定三角形全等的方法:1全等三角形的定义2判定定理:边边边(SSS) 边角边(SAS) 角边角(ASA) 角角边(AAS)推证两三角形全等时,要善于观察,寻求对应相等的条件,从而获得解题途径作业1课本习题4、6、题 板书设计1123 三角形全等的判定(三)一、两角一边二、三角形全等的条件1两角及其夹边对应相等的两三角形全等(ASA)2两角和其中一角的对边对应相等的两三角形全等(AAS)课堂检测1、如图1,小明把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法( )A、选去,B、选 C、选去 2、如图2,O是AB的中点, 要使通过角边角(ASA)来判定OACOBD,需要添加一个条件,下列条件正确的是( )A、A=B B、AC=BD C、C=D3、图中的两个三角形全等吗?请说明理由其内容本身有一定难度,学生的学习水平参差不齐,在七年级时曾对三角形的中线、角平分线和高都进行了学习和应用,并不是所有学生都掌握的很好,由于知识的储备量有限,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025江西文演数字文化产业有限公司招聘数字运营部项目经理考试笔试模拟试题及答案解析
- 江西省职工保障互助会抚州办事处公开招聘工作人员考试笔试备考题库及答案解析
- 2025年11月重庆市万州区天城街道公益性岗位招聘3人考试笔试模拟试题及答案解析
- 2025使用实验室场地合同
- 舞蹈教师笔试题目及答案
- 2026云南玉溪市市直医疗卫生事业单位第一批招聘编制内工作人员111人笔试考试备考题库及答案解析
- 2023年11月5日江西省南昌市人民检察院遴选面试真题及答案解析
- 2025年绿化养护合同范本示例
- 2025年房产中介服务费用协议
- 智能家居穿戴协同-洞察与解读
- 西南大学《模拟电路》2023-2024学年第一学期期末试卷
- 无处不在-传染病知到智慧树章节测试课后答案2024年秋南昌大学
- 旅行社安全生产例会制度模版(2篇)
- GB/T 11981-2024建筑用轻钢龙骨
- 人教版六年级语文上册第六单元习作:《学写倡议书》授课课件
- 边缘计算与云计算
- 汉语拼音默写表及拼读专练
- 广东省惠州市博罗县华侨中学2024-2025学年高二上学期同步检测生物学试题(含答案)
- 肺癌(肺恶性肿瘤)中医临床路径
- 广州宝能场馆招商合作方案
- 福建省福州市台江区华伦中学2025届九年级化学第一学期期中监测试题含解析
评论
0/150
提交评论