


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
概率1.随机事件的概率及概率的意义1、基本概念:(1)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试(2)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率2.概率的基本性质2.1概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0P(A)1;2)当事件A与B互斥时,满足加法公式:P(AB)= P(A)+ P(B);3)若事件A与B为对立事件,则AB为必然事件,所以P(AB)= P(A)+ P(B)=1,于是有P(A)=1P(B);3.古典概型及随机数的产生(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。(2)古典概型的解题步骤; 求出总的基本事件数; 求出事件A所包含的基本事件数,然后利用公式P(A)=4.几何概型及均匀随机数的产生基本概念:(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;(2)几何概型的概率公式:P(A)=;5.分层抽样先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。两种方法:1先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。2先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。抽样比.层1的数量层2的数量层3的数量样本1的容量样本2的容量样本3的容量6.数形结合思想解决有关统计问题(1)通过频率分布直方图和频数条形图研究数据分布的总体趋势;(2)根据样本数据散点图确定两个变量是否存在相关关系解答时注意的问题: (1)频率分布直方图中的纵坐标为,而不是频率值;(2) 注意频率分布直方图与频数条形图的纵坐标的区别7.茎叶图中位数:众数:平均数:8.两个变量的线性相关1、概念: (1)回归直线方程 (2)回归系数2最小二乘法:,其中3直线回归方程的应用 (1)描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系 (2)利用回归方程进行预测;把预报因子(即自变量x)代入回归方程对预报量(即因变量Y)进行估计,即可得到个体Y值的容许区间。9.用样本的数字特征估计总体的数字特
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年新能源汽车制造产业绿色制造与节能减排报告
- 制造业数字化转型数据治理在设备性能优化中的应用实践报告
- 综合解析人教版(五四制)6年级数学下册期末试题附参考答案详解(A卷)
- 跨链预言机安全模型-洞察及研究
- 商业银行金融科技人才发展报告:2025年人才培养与团队协作效率提升
- 中级银行从业资格之中级银行业法律法规与综合能力题型+答案(考点题)含答案详解【综合题】
- 自考专业(护理)真题及答案详解(新)
- 专升本真题及答案详解【考点梳理】
- 基于2025年工业互联网平台的网络安全态势感知技术深度解析报告
- 环保公司薪酬管理办法
- 珠宝专业英语
- 科目二考试成绩单
- 电子商务师国家职业资格培训教程ppt
- 严重过敏反应急救指南共37张课件
- 微电网的总体结构
- DB53-T 1119-2022石林彝族(撒尼)刺绣技法-(高清最新)
- 辽宁省盘锦市各县区乡镇行政村村庄村名居民村民委员会明细
- 喷砂检验报告
- 原材料来料检验报告
- PCB板来料检验规范
- 诺如病毒感染暴发调查和预防控制技术指南(2023版)
评论
0/150
提交评论