数字逻辑电路.DOC

基于PLC的平面磨床自动控制系统的改造【5张CAD图纸+毕业论文】【答辩优秀】

收藏

压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:472397    类型:共享资源    大小:448.85KB    格式:RAR    上传时间:2015-08-14 上传人:好资料QQ****51605 IP属地:江苏
45
积分
关 键 词:
基于 plc 平面磨床 自动控制系统 改造 全套 cad 图纸 毕业论文 答辩 优秀 优良
资源描述:

摘  要

本文介绍了用可编程序控制器来对平面磨床M7120控制系统进行现代化改造。改造后的磨床工作安全可靠,系统运行情况良好,磨削精度更高;利用PLC控制磨床运行,实现了磨床启动、停止、故障停止的功能,并且有手动控制和自动控制两种控制方式,可根据运行要求灵活切换磨床的控制方式;提供过载,轻载,断相和电压不平衡保护;现场显示运行状态,实现智能化监控。实现了磨床运行的自动化且使原机床控制大大的简单化,并且维修方便,易于检查,工作效率更高。


关键词:PLC,平面磨床,改造  


Based on PLC Surface Grinding Machine Automatic Control System's Transformation

Abstract

This paper describes that use PLC to modernize the surface grinder machine M7120’s control systems. After the transformation of the grinder , the system is work safety and reliability ,running well as well as higher precision grinding .Using PLC control grinding machine running, and the grinder start, stop, failure to stop the function, and the manual control and automatic control , Under the operational requirements  switches the way of the Control

method flexibly ; provide over-load, light-load, loss of phase and the imbalance protects of voltage, demonstrate the state of the running scene and intelligent control. Grinder has realized the automation working and  the control of  the original machine greatly simplified and easy maintenance, easy to check, work more efficient.


Key words: Progammable Logic Controller, Surface Grinder Machine, Transformation


目  录


1 绪论1

2 设计要求2

3 磨床的概述2

3.1 磨床介绍2

3.2 世界平面磨床发展趋势2

3.2.1现代平面磨床的主要特点2

3.2.2发展呈现四大变化3

3.2.3根本在于设计创新4

4 可编程序控制器(PLC)的概况4

4.1 PLC的系统结构和基本工作原理4

4.1.1 PLC的系统结构4

4.1.2 PLC的基本工作原理5

4.1.3 PLC的主要功能6

4.2  PLC的应用设计步骤7

4.3 PLC的选型原则8

4.3.1 松下电工可编程序控制器产品---FP1-C24介绍9

5 系统的总体设计11

5.1 改造平面磨床的步骤11

5.1.1 改造方案的确定11

5.1.2 改造的技术准备11

5.1.3 改造的实施12

5.2 用PLC改造继电-接触式控制系统的步骤13

5.3 控制线路控制改造要求14

5.4 原设备电器的工作原理14

5.4.1 平面磨床主要结构和运动形式14

5.4.2 电气控制线路分析15

5.5 分析控制对象,进行系统的硬件设计19

5.6 系统的软件设计20

6 磨床改造后的调试22

7 结束语23

致谢23

参考文献23

附录25


1 绪论

现代工业生产中,中、小批量零件的生产占产品数量的比例越来越高,零件的复杂性和精度要求迅速提高,传统的普通磨床已经越来越难以适应现代化生产的要求,制造业的竞争已从早期降低劳动力成本、产品成本,提高企业整体效率和质量的竟争,发展到全面满足顾客要求、积极开发新产品的竟争,将面临知识——技术——产品的更新周期越来越短,产品批量越来越小,而对质量、性能的要求更高,同时社会对环境保护、绿色制造的意识不断加强。因此敏捷先进的制造技术将成为企业赢得竟争和生存、发展的主要手段。计算机信息技术和制造自动化技术的结合越来越紧密,作为自动化柔性生产重要基础的数控机床在生产机床中所占比例将越来越多。但新机床购置费用高,且生产准备周期长。因此对原有机床的现代化改造显得尤为重要。而用PLC改造老机床有很多优点:⑴节省资金,减少投资额,交货期短  机床的PLC改造,可大大减少资金的投入,同购置新机床相比,一般可节省60 % ~80 % 的费用,改造费用低。特别是大型、特殊设备尤为明显。一般大型机床改造,只需花新机床购置费的1/3。即使将原机床的结构进行彻底改造升级,也只需花费购买新机床60 % 的价格。⑵性能稳定可靠 因原机床各基础件经过长期时效,几乎不会产生应力变形而影响精度,且各部件已经长期磨合,使改造后的机床性能稳定可靠,质量好,可作为新设备继续长期使用。⑶可充分体现企业自身的意愿  企业与改造人员可依照实际需要和机床长期使用的情况,在改造中提出对机床性能、操作与维修等方面的改进意见,有权选择机械零部件、数控系统、电器设备等的规格、型号、性能等。可根据技术革新的发展速度,及时地提高生产设备的自动化水平和效率,提高设备质量和档次,将机床改造成具有当今水平的设备。⑷更有利于使用和维护  由于改造前机床已使用多年,操作者对机床的特性早已了解,在操作使用和维修方面培训时间短、见效快。改造的机床一经安装好,就可实现全负荷运转。⑸可以采用最新的控制技术,提高生产效率。可根据技术革新的发展速度,及时地提高生产设备的自动化水平和效率,提高设备质量和档次,将旧机床改成当今水平的机床。机床经改造后,即可实现加工的自动化,效率可比传统机床提高3~7倍。对复杂零件而言,难度越高,功效提高得越多。且可以不用或少用工装,不仅节约了费用,而且可以缩短生产准备周期。提高产品质量,降低废品率,零件的加工精度高,尺寸分散度小,使装配方便灵活。因此,继电器本身固有的缺陷,给床的安全和经济运行带来了不利影响,用PLC对磨床的继电器式控制系统进行改造已是大势所趋[1] 。所以我们就以平面磨床改造来介绍一下。


内容简介:
1 Digital Logic Circuits Digital computers have taken a prominent place in engineering and science over the last two decades, performing a number of essential functions such as numerical computations and data acquisition. It is not necessary to further stress the importance of these electronic systems in this book, since you have certainly already had some encounters with digital computers and programming languages. The objective of the chapter is to discuss the essential features of digital logic circuits, which are at the heart of digital computers, by presenting an introduction to combinational logic circuits. The chapter starts with a discussion of the binary number system, and continues with an introduction to Boolean algebra. The self-contained treatment of Boolean algebra will enable you to design simple logic functions using the techniques of combinational logic, and several practical examples are provided to demonstrate that even simple combinations of logic gates can serve to implement useful circuits in engineering practice. In a later section, we introduce a number of logic modules which can be describe using simple logic gates but which provide more advanced functions. Among these, we discuss read-only memories, multiplexers, and decoders. Throughout the chapter, simple examples are given to demonstrate the usefulness of digital logic circuits in various engineering applications. Chapter 12 provides the background needed to address the study of digital systems, which will be undertaken in Chapter 13.Upon completion of the chapter, you should be able to: Perform operations using the binary number system. Design simple combinational logic circuits using logic gates. Use Karnaugh maps to realize logical expressions. Interpret data sheets for multiplexes, decoders, and memory ICs. 1. ANALOG AND DIGITAL SIGNALS One of the fundamental distinctions in the study of electronic circuits (and in the analysis of any signals derived from physical measurements ) in that between analog and digital signals .As discussed in the preceding chapter ,an analog signal is an electrical signal whose value varies in analogy with a physical quantity (e.g., temperature, force, or acceleration).For example, a voltage proportional to a measured variable pressure or to a vibration naturally varies in an analog fashion. Figure 12.1depicts an arbitrary analog function of time, f(t).We note immediately that for each value of time, t, f(t)can take one value among any of the values in a given range. For example, in the case of the output voltage of an op-amp, we except the signal to take any value between +Vsat and Vsat, where Vsat in the supply imposed saturation voltage. A digital signal, on the other hand , can take only a finite number of values. This is an extremely important distinction, as will be shown shortly. An example of a digital signal is a signal that allows display of a temperature measurement on a digital readout. Let us hypothesize that the digital readout is three digits long and can display nts 2 numbers from 0 to 100F. Further, the output of the sensor ranges from 0 to 5 volts, where 0V corresponds to 0F and 5V to 100F. Therefore, the calibration constant of the sensor is kT=100 -0 /5-0=20 /V. Clearly, the output of the sensor is an analog signal; however, the display can show only a finite number of readouts (101, to be precise). Because the display itself can only take a value out of a discrete set of states the integers from 0 to 100 we call it a digital display, indicating that the variable displayed is expressed in digital form. Now, each temperature on the display corresponds to a range of voltage: each digital on the display represents one hundredth of the 5-voltage range of sensor, or 0.05V =50mV. Thus, the display will read 0 if the sensor voltage is between 0 and 49mV, 1 if it is between 50 and 99 mV , and so on. Figure 12.2 depicts the staircase function relationship between the analog voltage and the digital readout. This quantization of the sensor output voltage is in effect an approximation. If one wish to know the temperature with greater precision, a greater number of display digits could be employed. The most common digital signals are binary signals. A binary signal is a signal that can take only one of two discrete values and is therefore characterized by transitions between two states. Figure 12.3 displays a typical binary signal. In the binary arithmetic (which we discuss in the next section), the two discrete values f1 and f0 are represented by the numbers 1 and 0. In binary voltage waveforms, these values are represented by two voltage levels. For example, in the TTL convention (see Chapter 9), these values are (nominally) 5V and 0V , respectively; in COMS circuits, these values can vary substantially. Other conventions are also used, including reversing the assignment-for example, by letting a 0-V level represent a logic 1 and a 5-V level represent a logic 0. Note that in a binary waveform, knowledge of the transition between one state and another (e.g., from f0 to f1 at t=t2 ) is equivalent to knowledge of the state. Thus, digital logic circuits can operate by detection transitions between voltage levels. The transitions are often called edges and can be positive (f0 to f1) or negative (f1 to f0). Virtually all of the signals handled by a computer are binary. Form here on, whenever we speak of digital signals, you may assume that the text is referring to signals of the binary type, unless otherwise indicated. 2. THE BINARY NEMBER SYSTEM The binary number system is a natural choice for representing the behavior of circuits that operate in one of two states (on or off, 1 or 0 or the like ). The diode and transistor gates and switches studied in Chapter 9 fall in this category. Table 12.1 shows the correspondence between decimal and binary number systems for decimal numbers up to 16. Binary numbers are based on powers of 2, whereas the decimal system is based on powers of 10. For example, the number 372 in the decimal system can be expressed as 372=(3 102)+(7 101)+(2 100) while the binary number 10110 corresponds to the following combination of powers of 2: 10110=(1 24)+(0 23)+(1 22)+(1 21)+(0 20) nts 3 It is relatively simple to see the correspondence between the two number systems if we add the terms on the right-hand side of the previous expression. Let n2 represent the number n base 2(i.e., in the binary system) and n10 the same number base 10. Then, our notation will be as follows: 101102 =16+0+4+2+0=2210 Note that a fractional number can also be similarly represented. For example, the number 3.25 in the decimal system may be represented as 3.2510=3 100+2 10-1+5 10-2 while in the binary system the number 10.011 corresponds to 10.0112=1 21+0 20+0 2-1+1 2-2+1 2-3 =2+0+0+1/4+1/8=2.37510 Table 12.1 shows that it takes four binary digits, also called bits, to represent the decimal numbers up to 15. Usually, the rightmost bit is called the least significant bit, or LSB, and the leftmost bit is called the most significant bit, or MSB. Since binary numbers clearly require a larger number of digits than decimal numbers, the digits are usually grouped in sets of four, eight, or sixteen, Four bits are usually termed a nibble, eight bits are called a byte , and sixteen bits (or two bytes ) form a word. 2.1 Addition and Subtraction The operations of addition and subtraction are based on the simple rules shown in Table 12.2. Note that, just as is done in the decimal system, a carry is generated whenever the sum of two digits exceeds the largest single-digit number in the given number system, which is 1 in the binary system. The carry is treated exactly as in the decimal system. A few examples of binary addition are shown in figure 12.4 , with their decimal counterparts. The procedure for subtracting binary numbers is based on the rules of Table 12.3. A few examples of binary subtraction are given in Figure 12.5, with their decimal counterparts. 2.2 Multiplication and Division Whereas in the decimal system the multiplication table consists of 102=100 entries, in the binary system we only have 22=4 entries. Table 12.4 represents the complete multiplication table for the binary number system. Division in the binary system is also based on rules analogous to those of the decimal system, with the two basic laws given in Table 12.5. Once again, we need be concerned with only two cases, and just as in the decimal system, division by zero in not contemplated. 2.3 Conversion from Decimal to Binary The conversion of a decimal number to its binary equivalent is performed by successive division of the decimal number by 2, checking for the remainder each time. Figure 12.6 illustrates this idea with an example. The result obtained in Figure 12.6 may be easily verified performing the opposite conversion, from binary to decimal: 110001=25+24+20=32+16+1=49 nts 4 The same technique can be used for converting decimal fractional numbers to their binary form, provide that the whole numbers is separated from the fractional part and each is converted to binary form (separately), with the results added at the end. Figure 12.7 outlines this procedure by converting the number 37.53 to binary form. The procedure is outline is outlined in two steps. First , the integer part is converted; then, to convert the fractional part, one simple technique consists of multiplying the decimal fractional part, by 2 in successive stages. If the result exceeds 1, a 1 is needed to the right of the right of the binary fraction being formed (100101 ,in our example). Otherwise, a 0 is added. This procedure is continued until no fractional terms are left. In this case, the decimal part is 0.5310, and Figure 12.7 illustrates the succession of calculations. Stopping the procedure outline the procedure outline in Figure 12.7 after 11 digits results in the following approximation: 37.5310=100101.10000111101 Greater precision could be attained by continuing to add binary digits, at the expense of added complexity. nts 5 数字逻辑电路 在过去的二十年里,数字计算机在工程和科学中扮演着重要的角色, 执行许多必要的功能,例如数值计算和数据收集。 你已经有电子计算机和编程语言的一些经验, 不必要对这本书里的这些电子系 统的重要性有进一步的压力。 本书的目标是讨论数字逻辑电路的 重 要的特征,这是数字电子计算机的核心,提出组合逻辑电路的介绍。 本章从一个二进制的系统讨论开始,然 后 介绍布尔代数。 内含的布尔代数训练将使你能够使用组合逻辑技术设计简单的逻辑函数, 提供的几个实际例子显示出逻辑门的组合在工程实践可以实现有用的电路。 在后一部分,我们介绍许多逻辑模块描述使用简单逻辑门 , 但是提供 了 更多的高级功能。 在这些中,我们讨论只读存储器,多路复用器,以及译码器。 通过本书,提供的简单的例子在各种工程应用方面显示出数字逻辑电路的用途 。 12 章提供必备的背景从事数字化系统的研究,将在 13 章详细介绍。学完本书, 你应该能熟练应用二进制系统 , 用逻辑门设计简单的组合逻辑电路。 使用卡诺图认识逻辑表达式。 为多路复用器,译码器存储器翻译数据真值表。 1.模拟和数字信号 在电子电路的研究过程中的一个基本区分 (对从自然界得到的各种信号的分析 )是模拟和数字信号之间的一种。在先前的章里讨论过,一个模拟信号是连续变化的一个电信号 (例如,温度,力量或者加速度 )。 例如,与测量的易变压力成正比的电压或者用模拟方式变化自然震动。 12.1 章节描述任意的模拟 时间函数 f(t)。 我们注意到时间的函数 t, f(t)能在规定的范围内的任何值中一个值。例如,就输出电压而言,我们希望信号取 +Vsat 和 Vsat,之间的任意值,这里 Vsat 是提供的外加电压。 另一方面,一个数字信号,只能取有限值。 这是一种极其重要的区别,这不久将被显示。 例如,一个数字信号是一个允许数字读出的温度测量的数字显示的信号。 让我们假设,数字化的测量结果输出值是 3 位数字并且能显示数目从 0 F 到 100 F。 更进一步,传感器的测量从 0 到 5 伏特,在那里 0 V 相当于 0 F 和 5 V 相当于 100 F。 因此,传感器的测量范围是 kT = 100 -0 / 5-0 =20 / V。显然,传感器的输出是一个模拟信号; 不过,显示只能显示有限的测量结果输出值的数量 (101,是准确的 )。 因为显示本身取离散集中的一些数字整数从 0 到 100-我们称之为数字显示,表明变量显示可以以数字形式表示。 nts 6 现在,显示的每个温度需要合适的电压值: 现实的每个数字表示传感器 5伏电压幅值的 100 分之 1,或者 0.05 V = 50 mV 。 因此, 如果传感器电压是在0 和 49 mV 之间,显示结果是 0, 如果它在 50 和 99 mV 之间,显示结果是 1,等等类推。 图 12.2 描绘模拟电压和数字测量结果输出值之间的梯形功能关系。 传感器的量化输出电压是一个近似值。 如果希望知道温度更精确的值,则可以用更多的数字来显示。 最常用的数字信号是二进制信号。 一个二进制信号是只能取两个离散的值中的一个并且表示的是两种状态的互相转化。 图 12.3 展示一个典型的二进制的信号。 在二进制的算术 (我们在下一部分里讨论 )方面, 1 和 0 分别表示两离散值 f1 和 f0。 用二进制的电压波形,这些值将被两电压电平表示。 例如,在 TTL电路 (参阅第 9 章 )里, 这些值 (名义上 )分别是 5 V 和 0 V; 在 COMS 电路里,这些价值能自由变化。 其他电路里也被使用,包括反转电路 -例如,在让一个 0 V 电平代表逻辑 1 时,一个 5 V 电平代表逻辑 0。 用二进制的波形表示,从一种状态到另一种状态 (例如,从 f0 到 di 在 t = t2)之间的转化。 因此,数字逻辑电路能通过在不同电压电平之间实现。 转化经常被叫做极性并且可能是正的 (从f1 到 f0)或者负的 (从 f0 到 f1 )。实际上二进制可以表示出所有的信号。 从这里开始, 每当我们谈到数字信号时,都表示的是二进制信号,除非另作 表明。 2. 二进制的数字系统 二进制数字系统是描述在两种状态的一种转化的电路的行为的自然的选择 (开或关, 1 或者 0 诸如此类 )。 在第九章学习的二极管和晶体管门电路和转化开关为本章服务。 表格 12.1 显示十位数和二进位数系之间的转化。 二进制数基于 2 的权,而十进位制基于 10 的权。 例如,在十进位制里的 372 可以被以表示 372=(3* 102)+(7* 101)+(2* 100) 而二进制数 10110 可以表示为 10110=(1* 24)+(0* 23)+(1* 22)+(1* 2
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:基于PLC的平面磨床自动控制系统的改造【5张CAD图纸+毕业论文】【答辩优秀】
链接地址:https://www.renrendoc.com/p-472397.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!