北师大版数学八年级下册6.2平行四边形的判定(2).doc_第1页
北师大版数学八年级下册6.2平行四边形的判定(2).doc_第2页
北师大版数学八年级下册6.2平行四边形的判定(2).doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北师大版数学八年级下册6.2平行四边形的判断(2)教学设计一、学生情况分析学生知识技能基础:学生在小学已经学习过平行四边形,对平行四边形有直观的感知和认识。在第一节也学习了平行四边形的性质,第二节第一课时学生也已经掌握了三种判定的方法。学生活动经验基础:在掌握平行线和相交线有关几何事实的过程和平行四边形性质的学习中以及在第一课时摆放木条的过程中,学生已经初步经历过观察、操作等活动过程,获得了一定的探索图形性质的活动经验;同时,在学习数学的过程中也经历了很多合作过程,具有了一定的学习经验,具备了一定的合作和交流能力。 二、教学任务分析本节课是平行四边形的判定的第2课时,是在平行四边形的定义、性质的基础上又学习了平行四边形的两种判定方法进行学习的,在教学内容上起着承上启下的作用“承上”,首先,在探究判定定理的证明方法和运用判定定理时,用到了前一节课的探究方法及证明;其次,平行四边形的判定定理和性质定理是两两对应的互逆定理; “启下”,首先,平行四边形的性质定理、判定定理是研究特殊的平行四边形的基础;其次,平行四边形性质、判定的探究模式从方法上为研究特殊的平行四边形奠定了基础并且,本节内容还是学生运用化归思想、数学建模思想的良好素材,培养了学生的创新思维和探索精神教学目标知识技能目标1会证明对角线互相平分的四边形是平行四边形这一判定定理2理解对角线互相平分的四边形是平行四边形这一判定定理,并学会简单运用过程与方法目标1经历平行四边行判别条件的探索过程,在探究活动中发展学生大胆猜想的能力2在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的几何表达能力情感态度价值观目标通过平行四边形判别条件的探索,培养学生面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情教学重点:平行四边形判定方法的探究、运用教学难点:对平行四边形判定方法的探究以及平行四边形的性质和判定的综合运用三、教学过程设计第一环节复习引入:问题1(教师口头问题)1、判定四边形是平行四边形的方法有哪些?(一名学生带领同学一起回忆)ABCD(1)两组对边分别平行的四边形是平行四边形.(2)一组对边平行且相等的四边形是平行四边形.(3)两组对边分别相等的四边形是平行四边形.2、结合图形用几何语言描述上述方法。(三名学生依次回答)目的:1教师提出问题1,2,由学生独立思考,总结出判定四边形是平行四边形的几个条件。2对比平行四边形已有的判定方法,引出本节课的学习目标。第二环节探索活动活动: 工具:用两根不同长度的细木条.动手: 同桌学生能否合理摆放这两根细木条,使得连接四个顶点后成为平行四边形?思考2.1:你能说明你得到的四边形是平行四边形吗?思考2.2:以上活动事实,能用文字语言表达吗? (得出:对角线互相平分的四边形是平行四边形.)已知:如图6-12,四边形ABCD的对角线AC、BD相交于点O,并且OA=OC,OB=OD.求证:四边形ABCD是平行四边形.证明: OA=OC,OB=OD 且AOB=COD AOBCOD AB=CD 同理可得:BC=AD 四边形ABCD是平行四边形.目的:得出平行四边形的判定定理:对角线互相平分的四边形是平行四边形 注意事项在此活动中,教师应重点关注:(1)学生实验操作的准确性;(2)学生能否运用不同的方法从理论上证明他们的猜想、发现;(3)学生使用几何语言的规范性和严谨性第三环节巩固练习1.练一练2.例1 已知:如图6-13(1),在平行四边形ABCD 中,点E、F在对角线AC上,并且AE=CF求证:四边形BFDE是平行四边形吗?证明: 如图6-13(2),连接BD. 四边形ABCD是平行四边形 OA=OC OB=OD 又AE=CF OA-AE=OC-CF OE=OF 四边形BFDE是平行四边形。目的:鼓励学生充分交流后多种方法思考此题,是对本节内容及上节内容的综合应用。3.随堂练习 144页四、教学设计反思与说明 本节课的设计通过探究活动的开展探求平行四边形的判定方法,通过对判定方法的进一步理 解,典型例题的分析,精选的随堂练习,学生一定能够掌握平行四边形的判定方法及应用判定方法解决实际生活的问题第四环节回顾小结:师生共同小结: 谈谈我们今天

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论