倾向评分配对简介.ppt_第1页
倾向评分配对简介.ppt_第2页
倾向评分配对简介.ppt_第3页
倾向评分配对简介.ppt_第4页
倾向评分配对简介.ppt_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

IntroductiontoPropensityScoreMatching AReviewandIllustration ShenyangGuo Ph D SchoolofSocialWorkUniversityofNorthCarolinaatChapelHillJanuary28 2005ForWorkshopConductedattheSchoolofSocialWork UniversityofIllinois Urbana Champaign NSCAWdatausedtoillustratePSMwerecollectedunderfundingbytheAdministrationonChildren Youth andFamiliesoftheU S DepartmentofHealthandHumanServices FindingsdonotrepresenttheofficialpositionorpoliciesoftheU S DHHS PSManalyseswerefundedbytheRobertWoodJohnsonFoundationSubstanceAbusePolicyResearchProgram andbytheChildren sBureau sresearchgrant Resultsarepreliminaryandnotquotable Contactinformation sguo email unc edu Outline Day1Overview WhyPSM HistoryanddevelopmentofPSMCounterfactualframeworkThefundamentalassumptionGeneralprocedureSoftwarepackagesReview illustrationofthebasicmethodsdevelopedbyRosenbaumandRubin Outline continued ReviewandillustrationofHeckman sdifference in differencesmethodProblemswiththeRosenbaum Rubin smethodDifference in differencesmethodNonparametricregressionBootstrappingDay2Practicalissues concerns andstrategiesQuestionsanddiscussions PSMReferences Checkwebsite http sswnt5 sowo unc edu VRC Lectures index htm Linktofile Day1b doc WhyPSM 1 Need1 AnalyzecausaleffectsoftreatmentfromobservationaldataObservationaldata thosethatarenotgeneratedbymechanismsofrandomizedexperiments suchassurveys administrativerecords andcensusdata Toanalyzesuchdata anordinaryleastsquare OLS regressionmodelusingadichotomousindicatoroftreatmentdoesnotwork becauseinsuchmodeltheerrortermiscorrelatedwithexplanatoryvariable WhyPSM 2 Theindependentvariablewisusuallycorrelatedwiththeerrorterm Theconsequenceisinconsistentandbiasedestimateaboutthetreatmenteffect WhyPSM 3 Need2 RemovingSelectionBiasinProgramEvaluationFisher srandomizationidea Whethersocialbehavioralresearchcanreallyaccomplishrandomizedassignmentoftreatment ConsiderE Y1 W 1 E Y0 W 0 AddandsubtractE Y0 W 1 wehave E Y1 W 1 E Y0 W 1 E Y0 W 1 E Y0 W 0 Crucial E Y0 W 1 E Y0 W 0 Thedebateamongeducationresearchers theimpactofCatholicschoolsvis vispublicschoolsonlearning TheCatholicschooleffectisthestrongestamongthoseCatholicstudentswhoarelesslikelytoattendCatholicschools Morgan 2001 WhyPSM 4 Heckman Smith 1995 FourImportantQuestions Whataretheeffectsoffactorssuchassubsidies advertising locallabormarkets familyincome race andsexonprogramapplicationdecision Whataretheeffectsofbureaucraticperformancestandards locallabormarketsandindividualcharacteristicsonadministrativedecisionstoacceptapplicantsandplacetheminspecificprograms Whataretheeffectsoffamilybackground subsidiesandlocalmarketconditionsondecisionstodropoutfromaprogramandonthelengthoftimetakentocompleteaprogram Whatarethecostsofvariousalternativetreatments HistoryandDevelopmentofPSM Thelandmarkpaper Rosenbaum Rubin 1983 Heckman searlyworkinthelate1970sonselectionbiasandhiscloselyrelatedworkondummyendogenousvariables Heckman 1978 addressthesameissueofestimatingtreatmenteffectswhenassignmentisnonrandom Heckman sworkonthedummyendogenousvariableproblemandtheselectionmodelcanbeunderstoodasageneralizationofthepropensity scoreapproach Winship Morgan 1999 Inthe1990s Heckmanandhiscolleaguesdevelopeddifference in differencesapproach whichisasignificantcontributiontoPSM Ineconomics theDIDapproachanditsrelatedtechniquesaremoregenerallycallednonexperimentalevaluation oreconometricsofmatching TheCounterfactualFramework Counterfactual whatwouldhavehappenedtothetreatedsubjects hadtheynotreceivedtreatment Thekeyassumptionofthecounterfactualframeworkisthatindividualsselectedintotreatmentandnontreatmentgroupshavepotentialoutcomesinbothstates theoneinwhichtheyareobservedandtheoneinwhichtheyarenotobserved Winship Morgan 1999 Forthetreatedgroup wehaveobservedmeanoutcomeundertheconditionoftreatmentE Y1 W 1 andunobservedmeanoutcomeundertheconditionofnontreatmentE Y0 W 1 Similarly forthenontreatedgroupwehavebothobservedmeanE Y0 W 0 andunobservedmeanE Y1 W 0 TheCounterfactualFramework Continued Underthisframework anevaluationofE Y1 W 1 E Y0 W 0 canbethoughtasaneffortthatusesE Y0 W 0 toestimatethecounterfactualE Y0 W 1 ThecentralinterestoftheevaluationisnotinE Y0 W 0 butinE Y0 W 1 Therealdebateabouttheclassicalexperimentalapproachcentersonthequestion whetherE Y0 W 0 reallyrepresentsE Y0 W 1 FundamentalAssumption Rosenbaum Rubin 1983 Differentversions unconfoundedness ignorabletreatmentassignment Rosenbaum Robin 1983 selectiononobservables Barnow Cain Goldberger 1980 conditionalindependence Lechner1999 2002 and exogeneity Imbens 2004 1 to 1or1 to nMatchNearestneighbormatchingCalipermatchingMahalanobisMahalanobiswithpropensityscoreadded RunLogisticRegression Dependentvariable Y 1 ifparticipate Y 0 otherwise Chooseappropriateconditioning instrumental variables Obtainpropensityscore predictedprobability p orlog 1 p p GeneralProcedure Multivariateanalysisbasedonnewsample 1 to 1or1 to nmatchandthenstratification subclassification KernelorlocallinearweightmatchandthenestimateDifference in differences Heckman Either Or NearestNeighborandCaliperMatching Nearestneighbor ThenonparticipantwiththevalueofPjthatisclosesttoPiisselectedasthematch Caliper Avariationofnearestneighbor Amatchforpersoniisselectedonlyifwhere isapre specifiedtolerance Recommendedcalipersize 25 p1 to 1Nearestneighborwithincaliper Theisacommonpractice 1 to nNearestneighborwithincaliper MahalanobisMetricMatching withorwithoutreplacement Mahalanobiswithoutp score Randomlyorderingsubjects calculatethedistancebetweenthefirstparticipantandallnonparticipants Thedistance d i j canbedefinedbytheMahalanobisdistance whereuandvarevaluesofthematchingvariablesforparticipantiandnonparticipantj andCisthesamplecovariancematrixofthematchingvariablesfromthefullsetofnonparticipants Mahalanobismetricmatchingwithp scoreadded touandv NearestavailableMahalandobismetricmatchingwithincalipersdefinedbythepropensityscore needyourownprogramming Stratification Subclassification Matchingandbivariateanalysisarecombinedintooneprocedure nostep 3multivariateanalysis Groupsampleintofivecategoriesbasedonpropensityscore quintiles Withineachquintile calculatemeanoutcomefortreatedandnontreatedgroups Estimatethemeandifference averagetreatmenteffects forthewholesample i e allfivegroups andvarianceusingthefollowingequations MultivariateAnalysisatStep 3 Wecouldperformanykindofmultivariateanalysisweoriginallywishedtoperformontheunmatcheddata Theseanalysesmayinclude multipleregressiongeneralizedlinearmodelsurvivalanalysisstructuralequationmodelingwithmultiple groupcomparison andhierarchicallinearmodeling HLM Asusual weuseadichotomousvariableindicatingtreatmentversuscontrolinthesemodels VeryUsefulTutorialforRosenbaum Rubin sMatchingMethods D Agostino R B 1998 Propensityscoremethodsforbiasreductioninthecomparisonofatreatmenttoanon randomizedcontrolgroup StatisticsinMedicine17 2265 2281 SoftwarePackages ThereiscurrentlynocommercialsoftwarepackagethatoffersformalprocedureforPSM InSAS LoriParsonsdevelopedseveralMacros e g theGREEDYmacrodoesnearestneighborwithincalipermatching InSPSS Dr JohnPainterofJordanInstitutedevelopedaSPSSmacrotodosimilarworksasGREEDY http sswnt5 sowo unc edu VRC Lectures index htm WehaveinvestigatedseveralcomputingpackagesandfoundthatPSMATCH2 developedbyEdwinLeuvenandBarbaraSianesi 2003 asauser suppliedroutineinSTATA isthemostcomprehensivepackagethatallowsuserstofulfillmosttasksforpropensityscorematching andtheroutineisbeingcontinuouslyimprovedandupdated DemonstrationofRunningSTATA PSMATCH2 Part1 Rosenbaum Rubin sMethods Linktofile Day1c doc ProblemswiththeConventional PriortoHeckman sDID Approaches Equalweightisgiventoeachnonparticipant thoughwithincaliper inconstructingthecounterfactualmean Lossofsamplecasesdueto1 to 1match Whatdoestheresamplerepresent Externalvalidity It sadilemmabetweeninexactmatchandincompletematch whiletryingtomaximizeexactmatches casesmaybeexcludedduetoincompletematching whiletryingtomaximizecases inexactmatchingmayresult Heckman sDifference in DifferencesMatchingEstimator 1 Difference in differencesApplieswheneachparticipantmatchestomultiplenonparticipants Participantiinthesetofcommon support Multiplenonparticipantswhoareinthesetofcommon support matchedtoi Difference Differences in Totalnumberofparticipants Weight seethefollowingslides WeightsW i j distancebetweeniandj canbedeterminedbyusingoneoftwomethods Kernelmatching whereG isakernelfunctionand nisabandwidthparameter Heckman sDifference in DifferencesMatchingEstimator 2 Locallinearweightingfunction lowess Heckman sDifference in DifferencesMatchingEstimator 3 AReviewofNonparametricRegression CurveSmoothingEstimators IamgratefultoJohnFox theauthorofthetwoSagegreenbooksonnonparametricregression 2000 forhisprovisionoftheRcodetoproducetheillustratingexample WhyNonparametric WhyParametricRegressionDoesn tWork Focalx 120 The120thorderedxSaintLucia x 3183y 74 8 Thewindow calledspan contains 5N 95observations TheTask DeterminingtheY valueforaFocalPointX 120 Tricubekernelweights WeightswithintheSpanCanBeDeterminedbytheTricubeKernelFunction TheY valueatFocalX 120 IsaWeightedMean Weightedmean 71 11301 TheNonparametricRegressionLineConnectsAll190AveragedYValues ReviewofKernelFunctions Tricubeisthedefaultkernelinpopularpackages Gaussiannormalkernel Epanechnikovkernel parabolicshapewithsupport 1 1 Butthekernelisnotdifferentiableatz 1 Rectangularkernel acrudemethod LocalLinearRegression Alsoknownaslowessorloess AmoresophisticatedwaytocalculatetheYvalues Insteadofconstructingweightedaverage itaimstoconstructasmoothlocallinearregressionwithestimated 0and 1thatminimizes whereK isakernelfunction typicallytricube TheLocalAverageNowIsPredictedbyaRegressionLine InsteadofaLineParalleltotheX axis AsymptoticPropertiesoflowess Fan 1992 1993 demonstratedadvantagesoflowessovermorestandardkernelestimators Heprovedthatlowesshasnicesamplingpropertiesandhighminimaxefficiency InHeckman sworkspriorto1997 heandhisco authorsusedthekernelweights Butsince1997theyhaveusedlowess Inpracticeit sfairlycomplicatedtoprogramtheasymptoticproperties NosoftwarepackagesprovideestimationoftheS E forlowess Inpractice oneusesS E estimatedbybootstrapping BootstrapStatisticsInference 1 Itallowstheusertomakeinferenceswithoutmakingstrongdistributionalassumptionsandwithouttheneedforanalyticformulasforthesamplingdistribution sparameters Basicidea treatthesampleasifitisthepopulation andapplyMonteCarlosamplingtogenerateanempiricalestimateofthestatistic ssamplingdistribution Thisisdonebydrawingalargenumberof resamples ofsizenfromthisoriginalsamplerandomlywithreplacement AcloselyrelatedideaistheJackknife droponeout Thatis itsystematicallydropsoutsubsetsofthedataoneatatimeandassessesthevariationinthesamplingdistributionofthestatisticsofinterest BootstrapStat

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论