已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
必修1 第一章集合与函数概念 1 3函数的基本性质 1 3 2奇偶性 1 实践操作 取一张纸 在其上画出平面直角坐标系 并在第一象限任画一可作为函数图象的图形 然后按如下操作并回答相应问题 引入课题 1 以y轴为折痕将纸对折 并在纸的背面 即第二象限 画出第一象限内图形的痕迹 然后将纸展开 观察坐标系中的图形 引入课题 问题 将第一象限和第二象限的图形看成一个整体 则这个图形可否作为某个函数y f x 的图象 若能请说出该图象具有什么特殊的性质 函数图象上相应的点的坐标有什么特殊的关系 可以作为某个函数y f x 的图象 并且它的图象关于y轴对称 若点 x f x 在函数图象上 则相应的点 x f x 也在函数图象上 即函数图象上横坐标互为相反数的点 它们的纵坐标一定相等 p x f x p x f x 2 以y轴为折痕将纸对折 然后以x轴为折痕将纸对折 在纸的背面 即第三象限 画出第一象限内图形的痕迹 然后将纸展开 观察坐标系中的图形 引入课题 问题 将第一象限和第三象限的图形看成一个整体 则这个图形可否作为某个函数y f x 的图象 若能请说出该图象具有什么特殊的性质 函数图象上相应的点的坐标有什么特殊的关系 2 以y轴为折痕将纸对折 然后以x轴为折痕将纸对折 在纸的背面 即第三象限 画出第一象限内图形的痕迹 然后将纸展开 观察坐标系中的图形 引入课题 p x f x p x f x p x f x 可以作为某个函数y f x 的图象 并且它的图象关于原点对称 若点 x f x 在函数图象上 则相应的点 x f x 也在函数图象上 即函数图象上横坐标互为相反数的点 它们的纵坐标也一定互为相反数 新课教学 一 函数的奇偶性定义 象上面实践操作 1 中的图象关于y轴对称的函数即是偶函数 2 中的图象关于原点对称的函数即是奇函数 偶函数 奇函数 新课教学 一 函数的奇偶性定义 1 偶函数 evenfunction 一般地 对于函数f x 的定义域内的任意一个x 都有f x f x 那么f x 就叫做偶函数 偶函数 偶函数的图象关于y轴对称 2 奇函数 oddfunction 一般地 对于函数f x 的定义域内的任意一个x 都有f x f x 那么f x 就叫做奇函数 新课教学 一 函数的奇偶性定义 奇函数 奇函数的图象关于原点对称 二 具有奇偶性的函数的图象的特征 偶函数的图象关于y轴对称 奇函数的图象关于原点对称 注意 函数是奇函数或是偶函数称为函数的奇偶性 函数的奇偶性是函数的整体性质 由函数的奇偶性定义可知 函数具有奇偶性的一个必要条件是 对于定义域内的任意一个x 则 x也一定是定义域内的一个自变量 即定义域关于原点对称 新课教学 三 典型例题 例1 判断下列函数的奇偶性 解 1 对于函数 其定义域为 对定义域内的每一个x 都有 函数为偶函数 例1 判断下列函数的奇偶性 解 2 对于函数 其定义域为 对定义域内的每一个x 都有 函数为奇函数 例1 判断下列函数的奇偶性 解 对定义域内的每一个x 都有 3 对于函数 其定义域为 x x 0 函数为奇函数 例1 判断下列函数的奇偶性 解 对定义域内的每一个x 都有 4 对于函数 其定义域为 x x 0 函数为奇函数 例1 判断下列函数的奇偶性 总结 利用定义判断函数奇偶性的格式步骤 首先确定函数的定义域 并判断其定义域是否关于原点对称 确定f x 与f x 的关系 作出相应结论 若f x f x 或f x f x 0 则f x 是偶函数 若f x f x 或f x f x 0 则f x 是奇函数 利用函数的奇偶性补全函数的图象 例2 如图是函数图像的一部分 你能根据的奇偶性画出它在y轴左边的图象吗 解 对定义域内的每一个x 都有 对于函数 其定义域为 函数为奇函数 奇函数的图象关于原点对称 因此可以画出函数的图象 规律 偶函数的图象关于y轴对称 奇函数的图象关于原点对称 说明 这也可以作为判断函数奇偶性的依据 课堂小结 本节主要学习了函数的奇偶性 判断函数的奇偶性通常有两种方法 即定义法和图象法 用定义法判断函数的奇偶
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 百威中国供应链专员笔试题库含答案
- 聚美优品运营主管面试问题集
- 英语教师面试全攻略教学技巧与知识测试题
- 2025年城市清洁水源工程可行性研究报告
- 2026届湖北省云学联盟高三上学期12月考试历史试题(含答案)
- 2025年教育国际化合作项目可行性研究报告
- 2025年城市共享单车管理平台项目可行性研究报告
- 2025年某市水资源综合利用项目可行性研究报告
- 2026年漳州卫生职业学院单招职业倾向性测试题库及答案详解一套
- 2026年广州城建职业学院单招综合素质考试题库及参考答案详解
- 2026成方金融信息技术服务有限公司校园招聘5人考试题库附答案
- 车辆租赁服务协议书
- 2025安徽安庆市公安机关招聘警务辅助人员418人备考笔试题库及答案解析
- 2025广东广州市黄埔区招聘社区专职工作人员50人(第二次)参考笔试题库及答案解析
- 2024年广州市南沙区南沙街道社区专职招聘考试真题
- 2026年牡丹江大学单招职业技能考试题库新版
- 国家开放大学22517《社区工作》(统设课)期末终考题库
- 江西省三新协同体2025-2026年高一上12月历史试卷(含答案)
- 2026年大庆医学高等专科学校单招职业适应性测试题库及答案详解1套
- (2026年)老年痴呆认知症患者的照护课件
- 2025年中职电梯安全管理(电梯安全规范)试题及答案
评论
0/150
提交评论