广西柳州市第十四中学八年级数学下册《菱形的判定》课件 新人教版.ppt_第1页
广西柳州市第十四中学八年级数学下册《菱形的判定》课件 新人教版.ppt_第2页
广西柳州市第十四中学八年级数学下册《菱形的判定》课件 新人教版.ppt_第3页
广西柳州市第十四中学八年级数学下册《菱形的判定》课件 新人教版.ppt_第4页
广西柳州市第十四中学八年级数学下册《菱形的判定》课件 新人教版.ppt_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

菱形的判定 1 如图 ab cd是 o的两条直径 四边形acbd是矩形吗 证明你的结论 ao bo co do 圆的相等半径 四边形abcd是平行四边形 ab cd 圆的直径相等 四边形abcd是矩形 2 如图 abcd中 1 2 此时四边形abcd是矩形吗 为什么 zxxk ao co bo do 1 2 ao bo ac bd 四边形abcd是矩形 1 如图 abcd中 ab 6 bc 8 ac 10 求证四边形abcd是矩形 ab 6 bc 8 ac 10且62 82 102 ab2 bc2 ac2 b 900 四边形abcd是矩形 2 如图 abc中 ab ac ad ae分别是 a与 a的外角的平分线 be ae 求证 ab de ab ac ad平分 bac ad bc 1 bac 2 等腰三角形三线合一 ae平分 baf 2 baf 2 bac baf 1800 1 2 bac baf 2 900 be ae bda dae bea 900 四边形bdae是矩形 1 2 f 已知平行四边形abcd 对角线ac bd相交于o 简述平行四边形的性质 z x x k 边 角 对角线 两组对边分别平行 两组对边分别相等 一组对边平行且相等 两组对角分别相等 对角线互相平分 复习 复习 菱形的特殊性 边 角 对角线 四边相等 对角线平分一组对角 对角线互相垂直平分 菱形的性质有 1 两条对角线互相平分2 四条边都相等3 每条对角线平分一组对角 判定定理1 有一组邻边相等的平行四边形是菱形 abcdab bc 四边形abcd是菱形 判定定理2 对角线互相垂直的平行四边形是菱形 abcdac bd 四边形abcd是菱形 o 判定定理3 四条边都相等的四边形是菱形 ab bc cd ad 四边形abcd是菱形 判定定理4 每条对角线平分一组对角的四边形是菱形 ac平分 bad和 bcd bd平分 abc和 adc 四边形abcd是菱形 问 如何证明判定定理2和判定定理3呢 判定定理2对角线互相垂直的平行四边形是菱形 已知abcd中 对角线ac bd互相垂直 求证 四边形abcd是菱形 证明 在中 oa oc 又 ac bd bd所在直线是线段ac的垂直平分线 ab bc 四边形abcd是菱形 判定定理3 四条边都相等的四边形是菱形 已知 ab bc cd da求证 四边形abcd是菱形 ab cd bc ad 四边形abcd是平行四边形 ab cd 四边形abcd是菱形 有一组邻边相等的平行四边形是菱形 判断对错 1 对角线互相垂直的四边形是菱形 2 对角线垂直且平分的四边形是菱形 3 对角线垂直的矩形是菱形 4 对角线垂直且相等的四边形是菱形 5 有一条对角线平分一组对角的四边形是菱形 课后练习2 3 1 如图 ad是 abc的一条角平分线 de ac交ab于点e df ab交ac于点f 求证四边形aedf是菱形 2 如图 abc中 ab ac 点d是bc的中点 de ac于e dg ab于g ek ab于k gh ac于h ek和gh相交于点f 求证 四边形defg是菱形 如图 ae平行bf ac平分角bad 交bf于c bd平分角abc 交ae于d 连接cd 求证 四边形abcd是菱形 课本102页6 11 10 12 已知 矩形abcd的对角线ac的垂直平分线与边ad bc分别交于点e f 求证 四边形afce是菱形 证明 四边形abcd是矩形 ae fc 1 2 ef平分ac ao oc 又 aoe cof 90 aoe cof eo fo 四边形afce是平行四边形 又 ef ac 四边形afce是菱形 3 如图 菱形abcd的周长为2p 对角线ac bd交于o ac bd q 求菱形abcd的面积 提示 利用两数和的平方公式 a b 2 a2 2ab b2与勾股定理 小结 菱形的证明方法 判定定理1 有一组邻边相等的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论