计算说明书.doc

磁力式拧瓶机的设计及工程分析[三维UG]【10张CAD图纸和毕业论文】【拧盖旋盖机】

收藏

资源目录
跳过导航链接。
磁力式拧瓶机的设计及工程分析[三维UG]【全套CAD图纸和毕业论文】【答辩优秀】.rar
计算说明书.doc---(点击预览)
计划周记进度检查表.xls---(点击预览)
开题报告+翻译.doc---(点击预览)
3D-UG
gezhonglinjian
1.prt
2.prt
boganjigou.prt
chilun7.prt
dadailun.prt
diandongji1.prt
dingwei.prt
guidao.prt
guidao1.prt
guidao2.prt
guidao5.prt
guidaoshenjiang2.prt
guidaoshuping.prt
gunzi.prt
jian1.prt
jianzhongxinzhou.prt
jijia2.prt
jijia3.prt
ligaiji4.prt
ligaijizhuangpei.prt
luoshuang12.prt
luoshuang20.prt
luoshuangm10zhuangpei.prt
luoshuangm12zhuangpei.prt
m10luomuzhuangpei.prt
pinggai.prt
pingzi.prt
pingzi1.prt
shengjiangguidao3.prt
shengjiangguidao4.prt
waixiangti.prt
xiaodailun.prt
xiaodailunjian.prt
xuangaiji22.prt
xuangaiji23.prt
xuangaiji24.prt
xuangaiji26_jijia.prt
xuangaiji27.prt
xuangaiji31.prt
xuangaijilinjian2.prt
xuangaijixiangtilinjian1.prt
xuangaijizuo.prt
xuangaijizuo1.prt
xuangaijizuo2.prt
xuangaitou.prt
xuangaitou2.prt
xuangaitou3.prt
yuanzhutulun.prt
zhongxinzhou1.prt
zhou1xuangai.prt
zhou2xuangaitou.prt
zhou3xuangaiji.prt
zhou4xuangaiji.prt
zhou5xuangaitou.prt
zhou6xuangaitou.prt
zhou7xuangaitou.prt
zhoucheng.prt
zhouchengtuili.prt
zhuanpan.prt
zhuanpan2.prt
zhuanpanxin.prt
zhuichilun.prt
zhuichilun4.prt
zhuichilunda.prt
dadailun.prt
jijia.prt
shengjiangguidao3.prt
xiaodailun.prt
xuangaitou3.prt
yuanzhutulun.prt
yuanzhutulunxin.prt
zhou7xuangaitou1.prt
zhuanpanxin.prt
zhuichilunda1.prt
zhuichilunxiao1.prt
PDF图纸备份
A0装配图.dwg
A1圆柱凸轮.dwg
A1转盘.dwg
A2大锥齿轮.dwg
A3中心轴.dwg
A3大带轮.dwg
A3小锥齿轮.dwg
A3旋盖头.dwg
A4小带轮.dwg
机架.dwg
压缩包内文档预览:(预览前20页/共45页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:475501    类型:共享资源    大小:20.02MB    格式:RAR    上传时间:2015-08-30 上传人:好资料QQ****51605 IP属地:江苏
50
积分
关 键 词:
磁力 式拧瓶机 设计 工程 分析 三维 ug 全套 cad 图纸 以及 毕业论文 答辩 优秀 优良
资源描述:

【温馨提示】 购买原稿文件请充值后自助下载。

以下预览截图到的都有源文件,图纸是CAD,文档是WORD,下载后即可获得。


预览截图请勿抄袭,原稿文件完整清晰,无水印,可编辑

有疑问可以咨询QQ:414951605或1304139763

摘  要

国内外已经有了相当成熟的封口机的技术,形成了成熟的生产线,各种有特定功能的封口机、拧瓶机在生产生活中随处可见,技术经过不断创新和改良,形式得到多样化发展。

   拧瓶机是在灌装中旋紧瓶盖的专用设备,工作时必须保证适宜的旋紧力矩。力过小,则 瓶盖旋不紧;力若过大,则易损坏瓶嘴和瓶盖。为此,我们在吸收国内外先进设备的基础上研制了一种利用电磁力传递扭力矩实现瓶盖旋紧的旋盖头, 它不仅能根据需要方便地设定、调整旋紧力的大小, 还能适用于不同高度的瓶子。

本文介绍了本课题的研究背景和意义,论述了拧瓶机在国内外发展的状况,介绍了本次设计设计的内容及方法。本次设计的重点是拧瓶机的总体设计方案、封装过程的旋盖、输送方式和定位的方法,在此基础上进行了运动与结构设计。本次设计采用了回转式的封装方法,通过圆柱凸轮来实现旋盖头的上下升降运动。在满足包装机械原理的条件下,充分考虑了整机的布局和经济性。


关键词:拧瓶机;磁力;自动化;圆柱凸轮 ;


Abstract

   At home and abroad has been quite mature technology sealing machine, forming a fairly mature production line, various specific functions sealing machine, capping machine can be seen everywhere in the production and living, technical innovation and improvement, form diversified development.

Capping machine is tightening the cap in the process of beverage filling equipment, work must ensure that appropriate tightening torque. Torque is too small, cap screw is not tight; Torque is too big, easy to damage the bottle mouth and bottle caps.Therefore, we developed on the basis of absorbing foreign advanced equipment from a use of magnetic transfer torque capping head cap tightened, can be easily set as required, adjust the tightening torque of the size, and can be applied to different the height of the bottle.

This paper introduces the research background and significance of the topic, discussed capping machine development at home and abroad, introduced the content and methods design research.This is designed to focus the overall design of the capping machine, Capping, transportation and positioning of the packaging process, Based on this the motion and structure design. The packaging design is the rotary type ,through the cylindrical cam contour the capping head up and down reciprocating of the motion. And take full account to meet the principle of the packaging machinery, machine layout and economy.


Key words: capping machine; magnetic force; automation; cylindrical cam


目  录

摘  要III

AbstractIV

目  录V

1 绪论1

1.1 本课题的设计内容和意义1

1.2 国内外的发展概况1

1.3 本课题应达到的要求2

2 拧瓶机的总体设计3

2.1 拧瓶机的简介3

2.1.1 拧瓶机系统的构成3

2.2 拧瓶机的设计3

2.2.1 拧瓶机的整体传动设计3

2.2.2 拧瓶机的外形设计3

2.2.3 拧瓶机自动化控制系统的设计3

2.2.4 旋盖头装置的结构设计3

2.2.5 转盘装置的结构设计4

2.3 拧瓶机总体方案的确定4

2.3.1 方案一的介绍4

2.3.2 方案二的介绍4

2.3.3 方案三的介绍5

2.3.4 方案比较6

2.4 拧瓶机重要参数的确定6

2.4.1 设计参数:6

2.4.2 设计要求6

3 拧瓶机的组成及部件设计7

3.1 拧瓶机的组成7

3.2 圆柱凸轮的设计7

3.3 理盖装置的设计7

3.3.1 送盖自动料斗8

3.3.2 螺旋形供盖滑道8

3.3.3 输盖槽部件10

3.3.4 理盖机机架10

3.4 旋瓶转盘的设计12

3.5 拨杆机构的设计13

3.6 输送轨道的设计14

3.7 旋盖头的设计14

3.7.1 初级的外靠摩擦轮形式15

3.7.2 摩擦片扭矩限制机构15

3.7.3 电磁力扭矩限制机构16

4 拧瓶机传动部分的设计17

4.1 电动机的选择17

4.1.1 类型和结构型式的选择17

4.1.2 功率的确定17

4.1.3 转速的确定17

4.2 传动比的分配18

4.2.1 传动比分配的参考数据18

4.3 减速器的设计选择19

4.4 带传动的设计19

4.5 轴的设计及校核21

4.5.1 轴的材料21

4.5.2 轴的计算21

4.6 键的选择和键链接强度计算22

4.6.1 键的选择22

4.6.2 平键链接强度计算22

4.7 锥齿轮的设计计算23

4.8 滚动轴承选择原则27

5 拧瓶机控制系统29

5.1 控制要求29

5.2 控制系统的选择29

5.2.1 为何采用PLC控制29

6 拧瓶机的安装、维护和安全30

6.1 安装30

6.2 维护保养30

6.3 安装要求30

7 结论与展望31

7.1 结论31

7.2不足之处及未来展望31

致  谢32

参考文献33


1 绪论

1.1 本课题的设计内容和意义

拧瓶机是灌装生产线的主要设备之一,它被广泛用于玻璃瓶或PET瓶的螺纹盖封口。伴随着社会的发展,产品的包装质量要求对人们来说也越来越重要。在饮料,调味料,酒类,化妆品及药品等瓶包装的封口就大量采用螺纹盖封口。因为螺纹盖具有封口快捷,开启方便及开启瓶后又可重新封好等优点。目前已有全自动洗瓶机、全自动灌装机、全自动拧瓶机三合一的机型。

许多大型零售商都要求饮料和食品生产商采用塑料包装,为了减少包装破损和运输重量,并满足消费者的安全需要。带有螺旋密封盖的瓶子具有快速、便捷和密封等优点,使它越来越广泛的应用于许多产品包装。现在竞争日趋猛烈,自动封口机的高度自动化,智能化,高配置、高效率和低消费越来越受到行业的青睐。为了提高生产效率,特进行本课题磁力拧瓶机的设计。

第二章主要介绍了拧瓶机的总体设计,简单介绍了下拧瓶机的几种设计方案并与自己的方案比较了下以及拧瓶机的设计要求等。第三章介绍了拧瓶机的组成以及各部件设计,包括圆柱凸轮、理盖装置、转盘、输送轨道和旋盖头的设计。第四章主要介绍了拧瓶机传动部分的设计,包括电动机的选择、减速器的选择、带传动设计、轴校核、键的选取、滚动轴承的选取和锥齿轮的计算等等。第五章讲的是拧瓶机控制系统,分析后决定采用PLC控制系统。第六章主要讲拧瓶机的安装和维护。

1.2 国内外的发展概况

国内外已经有相当成熟的封口机技术,形成了相当成熟的生产线,各种有特定功能的封口机、拧瓶机也在生产生活中随处可见,技术不断创新和改良,形式多样化发展。

但目前国内自主研发的拧瓶机还存在可靠性低、稳定性差、旋盖质量低、返工率高等问题,国内灌装生产线中广泛使用的拧瓶机大多为直线式拧瓶机,采用瓶颈挂盖。经定位、预封后使盖平稳坐落在瓶口上,最后由皮带对盖顶部搓压摩擦而将盖旋紧。旋盖头主要结构型式经历了弹簧摩擦片式和磁力耦合式2种。弹簧摩擦片式在满足恒扭矩要求方面效果    较差,如经长时间使用后弹簧力会减小,摩擦片使用一段时间后也需进行更换和调整。目前,国内普遍使用的旋盖头为磁力耦合式。为了适应现代包装机高速、高效和高可靠性生产的需要, 研制出了FX12 型拧瓶机[1]和XG12回转型拧瓶机。近几年来随着食品饮料工业向大规模高效率方向发展。

拧瓶机是饮料灌装过程中旋紧瓶盖的专用设备,工作时必须保证适宜的旋紧力矩。力矩过小, 瓶盖旋不紧; 力矩过大, 易损坏瓶嘴和瓶盖。为此, 我们在吸收国外同类先进设备的基础上研制了一种利用磁力传递扭力矩实现瓶盖旋紧的旋盖头, 能根据需要方便地设定、调整旋紧力矩的大小, 并能适用于不同高度的瓶子,它具有效率高、速度快、可靠性好和自动化程度高等特点[2]。


内容简介:
ntsntsntsntsntsntsntsntsntsnts编号 无锡 太湖学院 毕业设计(论文) 相关资料 题目: 磁力式拧瓶机的设计及工程分析 信机 系 机械工程及自动化 专业 学 号: 0923190 学生姓名: 仲晓斌 指导教师: 何雪明 (职称: 副教授 ) (职称: ) 2013年 5月 25日 nts nts目 录 一、毕业设计(论文)开题报告 二、毕业设计(论文)外文资料翻译及原文 三、学生 “毕业论文(论文)计划、进度、检查及落实表 ” 四、实习鉴定表 nts nts无锡 太湖学院 毕业设计(论文) 开题报告 题目: 磁力 式 拧瓶机的设计及工程分析 信机 系 机械工程及自动化 专业 学 号: 0923190 学生姓名: 仲晓斌 指导教师: 何雪明 (职称: 副教授 ) (职称: ) 2012年 11月 12日 nts课题来源 来源于工厂 科学依据 (包括课题的科学意义;国内外研究概况、水平和发展趋势;应用前景等) ( 1)课题科学意义 拧瓶机是封口机的一种,它广泛用于玻璃瓶或 PET 瓶的螺纹盖封口。 这种封盖事先加工出内螺纹,螺纹有单头或多头之分,如药瓶多用单头螺纹,罐头瓶多用多头螺纹,是靠旋转封盖,将盖旋紧于容器口部 .由于螺纹盖具有封口快捷、开启方便及 开启后瓶又可重新旋上等优点,所以一些不含气的液料 , 诸如饮料、酒类、调味料、化妆品及药品、婴儿食品等瓶包装的封口中大量采用螺纹盖封口。在大型的自动化灌装线上 , 拧瓶机一般与灌装机联动 , 并且作一体机型设计 ,从而减小灌装至封盖的行程 , 使生产线结构更为紧凑。目前已有全自动洗瓶机、全自动灌装机、全自动拧瓶机三合一的机型。 为了减少包装破损和运输重量,并满足消费者的安全需要,许多大型零售商都要求饮料和食品生产商采用塑料包装。由于螺纹盖有封口快捷、开启方便及开启后瓶又可重新封好等优点 , 使其在许多产品的包装中应用越 来越广泛 , 诸如饮料、酒类、调味料、化妆品及药品等瓶包装的封口就大量采用螺纹盖封口。为了提高自动化生产线上瓶装产品密封包装的旋盖问题,提高生产效率,保证产品质量,特进行本课题自动拧瓶机机构的设计研究。 ( 2) 拧瓶机 的研究状况及其发展前景 国内外已经有相当成熟的封口机技术,形成了相当成熟的生产线,各种有特定功能的封口机、拧瓶机也在生产生活中随处可见,技术不断创新和改良,形式多样化发展。 目前国内自主研发的拧瓶机存在可靠性低、稳定性差、旋盖质量低、返工率高等问题,国内灌装生产线中广泛使用的拧瓶机大多为直线式 拧瓶机,采用瓶颈挂盖。经定位、预封后使盖平稳坐落在瓶口上,最后由皮带对盖顶部搓压摩擦而将盖旋紧。旋盖头主要结构型式经历了弹簧摩擦片式和磁力耦合式 2种。弹簧摩擦片式在满足恒扭矩要求方面效果较差,如经长时间使用后弹簧力会减小,摩擦片使用一段时间后也需进行更换和调整。目前,国内普遍使用的旋盖头为磁力耦合式。 拧瓶机是饮料灌装过程中旋紧瓶盖的专用设备 ,工作时必须保证适宜的旋紧力矩。力矩过小 , 瓶盖旋不紧 ; 力矩过大 , 易损坏瓶嘴和瓶盖。为此 , 我们在吸收国外同类先进设备的基础上研制了一种利用磁力传递扭力矩实现瓶盖旋 紧的旋盖头 , 能根据需要方便地设定、调整旋紧力矩的大小 , 并能 适用于不同高度的瓶子 。 nts研究内容 ( 1) 拧瓶机总体结构设计 进行拧瓶机结构总体方案设计,分析拧瓶机功能组成部分,进行最优化选择设计,让其实现。 ( 2) 拧瓶机的组成以及各部件设计 包括圆柱凸轮、理盖装置、转盘、输送轨道和旋盖头的设计。 ( 3)拧瓶机传动部分的设计 包括电动机的选择、减速器的选择、带传动的设计、轴的校核、键的选择、滚动轴承的选择和锥齿轮的计算等。 ( 4)拧瓶机控制系统 分析选用哪种控制系统比较好 拟采取的研究方法、技术路线、实验方案及可行性分析 ( 1)明确设计依据、原则和技术要求。 ( 2)查阅资料,分析现有的拧瓶机的优缺点,参考其方案设计确定本设计的整体方案, 并对该方案进行优化设计。 ( 3)对于拧瓶机进行设计并进行总体结构的设计。 ( 4)利用 UG 进行三维模型设计,检查各个零部件之间是否存在干涉,导出重要零部件的二维图 ( 5)写出具体的说明书。 研究计划及预期成果 研究计划: 2012 年 11 月 12 日 -2013 年 1 月 20 日:按照任务书要求查阅论文相关参考资料,填写毕业设计开题报告书。 2013 年 1 月 21 日 -2013 年 3 月 15 日:填写毕业实习报告。 2013 年 3 月 16 日 -2013 年 3 月 22 日:按照要求修改毕业设计开题报告。 2013 年 3 月 23 日 -2013 年 4 月 20 日:学习并翻译一篇与毕业设计相关的英文材料。 2013 年 4 月 22 日 -2013 年 5 月 3 日: 拧瓶机的总体设计 ,利用 UG 绘制拧瓶机简单的3D 模型。 2013 年 5 月 4 日 -2013 年 5 月 10 日: 拧瓶机的部件设计 。利用 UG 绘制拧瓶机器各部件的 3D 模型。 2013 年 5 月 11 日 -2013 年 5 月 20 日:毕业论文撰写和修改 ,并用 UG 出图 。 预期成果: 旋盖头利用磁能产生的力来进行旋盖,能够适应不同高度的瓶子。生产效率达到了 4000 至 5000 瓶 /时。 nts特色或创新之处 适用于不同高度的瓶子。 旋力可调、定位更加可靠。 利用通电产生磁力来进行旋盖。 已具备的条件和尚需解决的问题 实验方案思路已经非常明确,已经具备使用 利用 UG 进行三维制图。 使用 UG 绘图 的能力尚需加强。 不会仿真。 设计的拧瓶机还存在很多的不足,如 某些地方的设计考虑的还不够多,还需完善和改进, 自动化程度还不够高,成本较高等。 指导教师意见 指导教师签名: 年 月 日 教研室(学科组、研究所)意见 教研室主任签名: 年 月 日 系意见 主管领导签名: 年 月 日 nts英文原文 1 Introduction The screw compressor is one of the most common types of machine used to compress gases. Its construction is simple in that it essentially comprises only a pair of meshing rotors, with helical grooves machined in them, contained in a casing, which fits closely round them. The rotors and casing are separated by very small clearances. The rotors are driven by an external motor and mesh like gears in such a manner that, as they rotate, the space formed between them and the casing is reduced progressively. Thus, any gas trapped in this case is compressed. The geometry of such machines is complex and the flow of the gas being compressed within them occurs in three stages. Firstly, gas enters between the lobes, through an inlet port at one end of the casing during the start of rotation. As rotation continues, the space between the rotors no longer lines up with the inlet port and the gas is trapped and thus compressed. Finally, after further rotation, the opposite ends of the rotors pass a second port at the other end of the casing, through which the gas is discharged. The whole process is repeated between successive pairs of lobes to create a continuous but pulsating flow of gas from low to high pressure. These machines are mainly used for the supply of compressed air in the building industry, the food, process and pharmaceutical industries and, where required, in the metallurgical industry and for pneumatic transport. They are also used extensively for compression of refrigerants in refrigeration and air conditioning systems and of hydrocarbon gases in the chemical industry. Their relatively rapid acceptance over the past thirty years is due to their relatively high rotational speeds compared to other types of positive displacement machine, which makes them compact, their ability to maintain high efficiencies over a wide range of operating pressures and flow rates and their long service life and high reliability. Consequently, they constitute a substantial percentage of all positive displacement compressors now sold and currently in operation. The main reasons for this success are the development of novel rotor profiles, which have drastically reduced internal leakage, and advanced machine tools, which can manufacture the most complex shapes to tolerances of the order of 3 micrometers at an acceptable cost. Rotor profile enhancement is still the most promising means of further improving screw compressors and rational procedures are now being developed both to replace earlier empirically derived shapes and also to vary the proportions of the selected profile to obtain the best result for the application for which the compressor is required. Despite their wide usage, due to the complexity of their internal geometry and the non-steady nature of the processes within them, up till recently, only approximate analytical methods have been available to predict their performance. Thus, although it is known that their elements are distorted both by the heavy loads imposed by pressure induced forces and through temperature changes within them, no methods were available to predict the magnitude of these distortions accurately, nor how they affect the overall performance of the machine. In addition, improved modelling of flow patterns within the machine can lead to better porting design. Also, more accurate determination of bearing loads and how they fluctuate enable better choices of bearings to be made. Finally, if rotor and casing distortion, as a result of temperature and pressure changes within the compressor, can be estimated reliably, machining procedures can be devised to minimise their adverse effects. ntsScrew machines operate on a variety of working fluids, which may be gases, dry vapour or multi-phase mixtures with phase changes taking place within the machine. They may involve oil flooding, or other fluids injected during the compression or expansion process, or be without any form of internal lubrication. Their geometry may vary depending on the number of lobes in each rotor, the basic rotor profile and the relative proportions of each rotor lobe segment. It follows that there is no universal configuration which would be the best for all applications. Hence, detailed thermodynamic analysis of the compression process and evaluation of the influence of the various design parameters on performance is more important to obtain the best results from these machines than from other types which could be used for the same application. A set of well defined criteria governed by an optimisation procedure is therefore a prerequisite for achieving the best design for each application. Such guidelines are also essential for the further improvement of existing screw machine designs and broadening their range of uses. Fleming et al., 1998 gives a good contemporary review of screw compressor modelling, design and application. A mathematical model of the thermodynamic and fluid flow processes within positive displacement machines, which is valid for both the screw compressor and expander modes of operation, is presented in this Monograph. It includes the use of the equations of conservation of mass, momentum and energy applied to an instantaneous control volume of trapped fluid within the machine with allowance for fluid leakage, oil or other fluid injection, heat transfer and the assumption of real fluid properties. By simultaneous solution of these equations, pressure-volume diagrams may be derived of the entire admission, discharge and compression or expansion process within the machine. A screw machine is defined by the rotor profile which is here generated by use of a general gearing algorithm and the port shape and size. This algorithm demonstrates the meshing condition which, when solved explicitly, enables a variety of rotor primary arcs to be defined either analytically or by discrete point curves. Its use greatly simplifies the design since only primary arcs need to be specified and these can be located on either the main or gate rotor or even on any other rotor including a rack, which is a rotor of infinite radius. The most efficient profiles have been obtained from a combined rotor-rack generation procedure. The rotor profile generation processor, thermofluid solver and optimizer,together with pre-processing facilities for the input data and graphical post processing and CAD interface, have been incorporated into a design tool in the form of a general computer code which provides a suitable tool for analysis and optimization of the lobe profiles and other geometrical and physical parameters. The Monograph outlines the adopted rationale and method of modelling, compares the shapes of the new and conventional profiles and illustrates potential improvements achieved with the new design when applied to dry and oil-flooded air compressors as well as to refrigeration screw compressors. The first part of the Monograph gives a review of recent developments in screw compressors. The second part presents the method of mathematical definition of the general case of screw machine rotors and describes the details of lobe shape specification. It focuses on a new lobe profile of a slender shape with thinner lobes in the main rotor, which yields a larger cross-sectional area and shorter sealing lines resulting in higher delivery rates for the same tip speed. The third part describes a model of the thermodynamics of the compression-expansion processes, discusses some modelling issues and compares the shapes of new and conventional profiles. It illustrates the potential ntsimprovements achievable with the new design applied to dry and oil-flooded air compressors as well as to refrigeration screw compressors. The selection of the best gate rotor tip radius is given as an example of how mathematical modelling may be used to optimise the design and the machines operating conditions. The fourth part describes the design of a high efficiency screw compressor with new rotor profiles. A well proven mathematical model of the compression process within positive displacement machines was used to determine the optimum rotor size and speed, the volume ratio and the oil injection position and jet diameter. In addition, modern design concepts such as an open suction port and early exposure of the discharge port were included, together with improved bearing and seal specification, to maximise the compressor efficiency. The prototypes were tested and compared with the best compressors currently on the market. The measured specific power input appeared to be lower than any published values for other equivalent compressors currently manufactured. Both the predicted advantages of the new rotor profile and the superiority of the design procedure were thereby confirmed. 1.1 Basic Concepts Thermodynamic machines for the compression and expansion of gases and vapours are the key components of the vast majority of power generation and refrigeration systems and essential for the production of compressed air and gases needed by industry. Such machines can be broadly classified by their mode of operation as either turbomachines or those of the positive displacement type. Turbomachines effect pressure changes mainly by dynamic effects, related to the change of momentum imparted to the fluids passing through them. These are associated with the steady flow of fluids at high velocities and hence these machines are compact and best suited for relatively large mass flow rates. Thus compressors and turbines of this type are mainly used in the power generation industry, where, as a result of huge investment in research and development programmes, they are designed and built to attain thermodynamic efficiencies of more than 90% in large scale power production plant. However, the production rate of machines of this type is relatively small and worldwide, is only of the order of some tens of thousands of units per annum. Positive displacement machines effect pressure changes by admitting a fixed mass of fluid into a working chamber where it is confined and then compressed or expanded and, from which it is finally discharged. Such machines must operate more or less intermittently. Such intermittent operation is relatively slow and hence these machines are comparatively large. They are therefore better suited for smaller mass flow rates and power inputs and outputs. A number of types of machine operate on this principle such as reciprocating, vane, scroll and rotary piston machines. In general, positive displacement machines have a wide range of application, particularly in the fields of refrigeration and compressed air production and their total world production rate is in excess of 200 million units per annum. Paradoxically, but possibly because these machines are produced by comparatively small companies with limited resources, relatively little is spent on research and development programmes on them and there are very few academic institutions in the world which are actively promoting their improvement. One of the most successful positive displacement machines currently in use is the screw or twin screw compressor. Its principle of operation, as indicated in Fig. 1.1, is based on volumetric changes in three dimensions rather than two. As shown, it consists, essentially, of a pair of meshing helical lobed rotors, contained in a casing. ntsThe spaces formed between the lobes on each rotor form a series of working chambers in which gas or vapour is contained. Beginning at the top and in front of the rotors, shown in the light shaded portion of Fig. 1.1a, there is a starting point for each chamber where the trapped volume is initially zero. As rotation proceeds in the direction of the arrows, the volume of that chamber then increases as the line of contact between the rotor with convex lobes, known as the main rotor, and the adjacent lobe of the gate rotor Fig. 1.1. Screw Compressor Rotors advances along the axis of the rotors towards the rear. On completion of one revolution i.e. 360 by the main rotor, the volume of the chamber is then a maximum and extends in helical form along virtually the entire length of the rotor. Further rotation then leads to reengagement of the main lobe with the succeeding gate lobe by a line of contact starting at the bottom and front of the rotors and advancing to the rear, as shown in the dark shaded portions in Fig. 1.1b. Thus, the trapped volume starts to decrease. On completion of a further 360 of rotation by the main rotor, the trapped volume returns to zero. The dark shaded portions in Fig. 1.1 show the enclosed region where therotors are surrounded by the casing, which fits closely round them, while the light shaded areas show the regions of the rotors, which are exposed to external pressure. Thus the large light shaded area in Fig. 1.1a corresponds to the low pressure port while the small light shaded region between shaft ends B and D in Fig. 1.1b corresponds to the high pressure port. Exposure of the space between the rotor lobes to the suction port, as their front ends pass across it, allows the gas to fill the passages formed between them and the casing until the trapped volume is a maximum. Further rotation then leads to cut off of the chamber from the port and progressive reduction in the trapped volume. This leads to axial and bending forces on the rotors and also to contact forces between the rotor lobes. The compression process continues until the required pressure is reached when the rear ends of the passages are exposed to the discharge port through which the gas flows out at approximately constant pressure. It can be appreciated from examination of Fig. 1.1, is that if the direction of rotation of the rotors is reversed, then gas will flow into the machine through the high pressure port and out through the low pressure port and it will act as an expander. The machine will also work as an expander when rotating in the same direction as a compressor provided that the suction and discharge ports are positioned on the opposite sides of the casing to those shown since this is ntseffectively the same as reversing the direction of rotation relative to the ports. When operating as a compressor, mechanical power must be supplied to shaft A to rotate the machine. When acting as an expander, it will rotate automatically and power generated within it will be supplied externally through shaft A. The meshing action of the lobes, as they rotate, is the same as that of helical gears but, in addition, their shape must be such that at any contact position, a sealing line is formed between the rotors and between the rotors and the casing in order to prevent internal leakage between successive trapped passages. A further requirement is that the passages between the lobes should be as large as possible, in order to maximise the fluid displacement per revolution. Also, the contact forces between the rotors should be low in order to minimise internal friction losses. A typical screw rotor profile is shown in Fig. 1.2, where a configuration of 56 lobes on the main and gate rotors is presented. The meshing rotors are shown with their sealing lines, for the axial
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:磁力式拧瓶机的设计及工程分析[三维UG]【10张CAD图纸和毕业论文】【拧盖旋盖机】
链接地址:https://www.renrendoc.com/p-475501.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!