




已阅读5页,还剩49页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第六节直接证明与间接证明 1 直接证明 所要 证明的结论成立 结论 充分条件 2 间接证明 1 反证法 假设原命题不成立 即在原命题的条件下 结论不成立 经过正确的推理 最后得出矛盾 因此说明 从而证明了 的证明方法 假设错误 原命题成立 2 利用反证法证题的步骤 假设命题的结论不成立 即假设结论的反面成立 由假设出发进行正确的推理 直到推出矛盾为止 由矛盾断言假设不成立 从而肯定原命题的结论成立 简言之 否定 归谬 断言 判断下面结论是否正确 请在括号中打 或 1 综合法是直接证明 分析法是间接证明 2 分析法是从要证明的结论出发 逐步寻找使结论成立的充要条件 3 用反证法证明结论 a b 时 应假设 a b 4 反证法是指将结论和条件同时否定 推出矛盾 5 在解决问题时 常常用分析法寻找解题的思路与方法 再用综合法展现解决问题的过程 6 证明不等式较为合理的方法是分析法 解析 1 错误 综合法和分析法都是直接证明的方法 2 错误 分析法是从要证明的结论出发 逐步寻找使结论成立的充分条件 不必是充要条件 3 错误 应假设 a b 4 错误 反证法只是将结论进行否定 然后将这个反设作为条件 推出矛盾 5 正确 用分析法可以发现解决问题的思路 然后用综合法写出证明的步骤 6 正确 欲证的不等式两边都含有根号 且都大于0 因此可用分析法 通过平方等逐步寻求使其成立的条件 答案 1 2 3 4 5 6 1 若a b 0 则下列不等式中成立的是 a b c d 解析 选c a b 0 又b a 2 用分析法证明 欲使 a b 只需 c d 这里 是 的 a 充分条件 b 必要条件 c 充要条件 d 既不充分也不必要条件 解析 选b 分析法证明的本质是证明结论的充分条件成立 即 所以 是 的必要条件 3 用反证法证明命题 三角形的内角中至少有一个不大于60 时 假设正确的是 a 假设三内角都不大于60 b 假设三内角都大于60 c 假设三内角至多有一个大于60 d 假设三内角至多有两个大于60 解析 选b 至少有一个不大于 的否定为 都大于 4 已知a b x均为正数 且a b 则与的大小关系是 解析 答案 5 设a b是两个实数 给出下列条件 1 a b 2 2 a2 b2 2 其中能推出 a b中至少有一个大于1 的条件的是 填上序号 解析 取a 2 b 1 则a2 b2 2 从而 2 推不出结论 1 能够推出结论 即若a b 2 则a b中至少有一个大于1 可用反证法证明如下 假设a 1 且b 1 则a b 2与a b 2矛盾 因此假设不成立 所以a b中至少有一个大于1 答案 1 考向1综合法的应用 典例1 对于定义域为 0 1 的函数f x 如果同时满足以下三条 对任意的x 0 1 总有f x 0 f 1 1 若x1 0 x2 0 x1 x2 1都有f x1 x2 f x1 f x2 成立 则称函数f x 为理想函数 试判断g x 2x 1 x 0 1 是否为理想函数 如果是 请予证明 如果不是 请说明理由 思路点拨 根据理想函数的定义 分析判断g x 是否满足理想函数的三个条件即可 规范解答 g x 2x 1 x 0 1 是理想函数 证明如下 因为x 0 1 所以2x 1 2x 1 0 即对任意x 0 1 总有g x 0 满足条件 g 1 21 1 2 1 1 满足条件 当x1 0 x2 0 x1 x2 1时 g x1 x2 g x1 g x2 于是g x1 x2 g x1 g x2 由于x1 0 x2 0 所以于是g x1 x2 g x1 g x2 0 因此g x1 x2 g x1 g x2 满足条件 故函数g x 2x 1 x 0 1 是理想函数 互动探究 本例中条件不变 问题变为 若函数f x 是理想函数 证明f 0 0 如何求解 证明 令x1 x2 0 则满足x1 0 x2 0 x1 x2 1 于是有f 0 0 f 0 f 0 得f 0 0 又由条件 知f 0 0 故必有f 0 0 拓展提升 综合法证题的思路 变式备选 设a 0 b 0 a b 1 求证 证明 方法一 a 0 b 0 a b 1 又 2 a b 1 当且仅当a b 时取等号 ab 方法二 a b 1 故等号成立的条件是 考向2分析法的应用 典例2 已知函数f x 3x 2x 求证 对于任意的x1 x2 r 均有 思路点拨 用分析法证明 从要证明的不等式出发 将要证明的不等式逐步简化 直至得出明显成立的不等式 规范解答 要证明即证明因此只要证明即证明因此只要证明由于x1 x2 r时 由基本不等式知显然成立 故原结论成立 拓展提升 分析法证题的技巧 1 逆向思考是用分析法证题的主要思想 通过反推 逐步寻找使结论成立的充分条件 正确把握转化方向是使问题顺利获解的关键 2 在求解实际问题时 对于较复杂的问题 可以采用两头凑的办法 即通过分析法找出某个与结论等价 或充分 的中间结论 然后通过综合法由条件证明这个中间结论 使原命题得证 提醒 用反证法证明问题时 必须用文字说明 否则是错误的 变式训练 已知a 0 求证 证明 要证只要证 a 0 故只要证即 从而只要证只要证即而该不等式显然成立 故原不等式成立 考向3反证法的应用 典例3 已知数列 an 满足a1 an 1 an n 4 n n 其中 为实数 求证 数列 an 不是等比数列 思路点拨 先假设数列 an 是等比数列 则其前3项构成等比数列 由此推出矛盾 规范解答 由已知可得a1 a2 3 a3 4 假设存在实数 使 an 是等比数列 则必有即 3 2 4 于是 2 4 9 2 4 可得9 0 矛盾 所以数列 an 不是等比数列 互动探究 本题条件不变 问是否存在实数 使得 an 是等差数列 解析 假设存在实数 使得 an 是等差数列 由已知得a1 a2 3 a3 4 所以2 3 4 解得 18 于是an 18 3 n 1 3n 21 因此an 1 3n 18 代入an 1 an n 4中检验 成立 所以存在实数 18 使得 an 是等差数列 拓展提升 反证法证明问题的特点一般地 当一个命题的结论是以 至多 至少 唯一 或以否定形式出现时 宜用反证法来证 反证法关键是在正确的推理下得出矛盾 矛盾可以是与已知条件矛盾 与假设矛盾 与定义 公理 定理矛盾 与事实矛盾等 变式备选 2013 广州模拟 已知数列 an 的前n项和为sn 且满足an sn 2 1 求数列 an 的通项公式 2 求证数列 an 中不存在任意三项按原来顺序成等差数列 解析 1 当n 1时 a1 s1 2a1 2 则a1 1 又an sn 2 an 1 sn 1 2 两式相减得an 1 an an 是首项为1 公比为的等比数列 2 反证法 假设存在三项按原来顺序成等差数列 记为ap 1 aq 1 ar 1 p q r 则 2 2r q 2r p 1 又 p q r r q r p n 式左边是偶数 右边是奇数 等式不成立 假设不成立 原命题得证 满分指导 分析法与综合法的综合应用 典例 14分 2013 长沙模拟 已知函数f x ln x 2 a b c是两两不相等的正实数 且a b c成等比数列 试判断f a f c 与2f b 的大小关系 并证明你的结论 思路点拨 规范解答 f a f c 2f b 2分证明如下 因为a b c是两两不相等的正实数 所以由基本不等式可得 4分又因为a b c成等比数列 所以b2 ac 于是 6分而f a f c ln a 2 c 2 ln ac 2 a c 4 2f b 2ln b 2 ln b2 4b 4 10分 由于ac 2 a c 4 b2 2 a c 4 b2 4b 4 12分且函数f x ln x 2 是单调递增函数 因此ln ac 2 a c 4 ln b2 4b 4 故f a f c 2f b 14分 失分警示 下文 见规范解答过程 1 2013 西安模拟 设s是整数集z的非空子集 如果a b s 有ab s 则称s关于数的乘法是封闭的 若t v是z的两个不相交的非空子集 t v z 且 a b c t 有abc t x y z v 有xyz v 则下列结论恒成立的是 a t v中至少有一个关于乘法是封闭的 b t v中至多有一个关于乘法是封闭的 c t v中有且只有一个关于乘法是封闭的 d t v中每一个关于乘法都是封闭的 解析 选a 考虑把整数集z拆分成两个互不相交的非空子集t v的并集 如t为奇数集 v为偶数集 或t为负整数集 v为非负整数集 进行分析排除即可 不妨设t为奇数集 v为偶数集 满足题意 此时t与v关于乘法都是封闭的 排除b c 若t为负整数集 v为非负整数集 也满足题意 此时t与v关于乘法都是封闭的 排除d 从而可得t v中每一个关于乘法都是封闭的 a正确 2 2013 韶关模拟 用反证法证明命题 若a b n ab可被5整除 那么a b中至少有一个能被5整除 时 假设的内容应该是 a a b都能被5整除 b a b都不能被5整除 c a b不都能被5整除 d a能被5整除 解析 选b a b中至少有一个能被5整除 的否定是 a b都不能被5整除 3 2013 深圳模拟 在一条公路上每隔10公里有一个仓库 共有5个仓库 一号仓库存有10吨货物 二号仓库存有20吨货物 五号仓库存有40吨货物 其余两个仓库是空的 现在要把所有的货物集中存放在一个仓库里 若每吨货物运输1公里需要0 5元运输费 则最少需要的运费是 a 450元 b 500元 c 550元 d 600元 解析 选b 可以分步运算得到 一号仓库不需要考虑 若存到二号仓库 则花费10 10 0 5 40 30 0 5 650 元 若存到三号仓库 则花费10 20 0 5 20 10 0 5 40 20 0 5 600 元 若存到四号仓库 则花费10 30 0 5 20 20 0 5 40 10 0 5 550 元 若存到五号仓库 则花费10 40 0 5 20 30 0 5 500 元 最少需要的运费为500元 4 2013 南昌模拟 已知集合m x y y f x 若对于任意 x1 y1 m 存在 x2 y2 m 使得x1x2 y1y2 0成立 则称集合m是 好集合 给出下列4个集合 m x y y m x y y ex 2 m x y y cosx m x y y lnx 其中所有 好集合 的序号是 a b c d 解析 选b 问题等价于过坐标原点的两条互相垂直的直线与集合中的曲线都存在公共点 设直线方程为y kx 中 当k 1时 直线y x与曲线无公共点 故 中的集合不是 好集合 中 当k 0时 直线y kx与曲线y ex 2总有两个不同的公共点 此时直线y kx与曲线y ex 2有一个公共点 同理讨论k 0 k不存在的情况 故 中的集合是 好集合 中 根据函数y cosx的图象总能过坐标原点作互相 垂直的两直线 使之与曲线y cosx都有公共点 故 中的集合是 好集合 中 由于 lnx x 可得函数 x lnx x的最大值点是x 1 而 1 1 0 故lnx x 即当k 1时 直线y x与曲线y lnx无公共点 故 中的集合不是 好集合 1 已知集合p 1 4 9 16 25 若当a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论