22.3 实际问题与二次函数(3).doc_第1页
22.3 实际问题与二次函数(3).doc_第2页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

22.3 实际问题与二次函数(3)学习人: 班级: 学习日期:学习目标:1会应用二次函数解决抛物线型问题 2、体会数形结合思想和建模思想的应用温故互查1、抛物线顶点坐标为(1,2)且通过点(1,10),求此抛物线的解析式2、如图所示的抛物线的解析式可设为 ,若ABx轴,且AB=6,OC=2,则点A的坐标为 ,点B的坐标为 ;代入解析式可得出此抛物线的解析式为 。学习探究:(一)设问导读:阅读课本51页,完成下列问题:1、某涵洞是抛物线形,它的截面如图所示。现测得水面宽AB=4m,涵洞顶点O到水面的距离为1m,于是你可推断点A的坐标是 ,点B的坐标为 ;根据图中的直角坐标系内,涵洞所在的抛物线的函数解析式可设为 。解:思考:你还有其它建直角坐标系的方法吗?做一做。2、一个涵洞成抛物线形,它的截面如图,现测得,当水面宽时,涵洞顶点与水面的距离为这时,离开水面处,涵洞宽是多少?是否会超过? 小结:有关抛物线形的实际问题的一般解题思路:(1)、建立适当的平面直角坐标系;(2)、根据题意找出已知点的坐标;(3)求出抛物线解析式;(4)直接利用图像解决实际问题(二)自学检测1、河北省赵县的赵州桥的桥拱是抛物线型,建立如图所示的坐标系,其数的解析式为y=,当水位线在AB位置时,水面宽 AB = 30米,这时水面离桥顶的高度h是( ) A、5米 B、6米; C、8米; D、9米 2.有一个抛物线形的拱形隧道,隧道的最大高度为6m,跨度为8m,把它放在如图所示的平面直角坐标系中(1)求这条抛物线所对应的函数关系式;(2)若要在隧道壁上点P(如图)安装一盏照明灯,灯离地面高4.5m求灯与点B的距离巩固练习1、如图,有一座抛物线型拱桥,已知桥下在正常水位AB时,水面宽8m,水位上升3m, 就达到警戒水位CD,这时水面宽4m,若洪水到来时,水位以每小时0.2m的速度上升,求水过警戒水位后几小时淹到桥拱顶2、某校九年级的一场篮球比赛中,如图所示,队员甲正在投篮,已知球出手时离地面高m,与篮圈中心的水平距离为7 m,当球出手后水平距离为4 m时到达最大高度4 m设篮球的运动轨迹为抛物线,篮圈距地面3 m(1)请你建立适当的平面直角坐标系,并判定此球能否准确投中?(2)此时,若对方队员乙在甲面前1 m处跳起盖帽拦截,已知乙的最大摸高为2.9 m,那么他能否获得成功?测评与拓展1、 某工厂大门是一抛物线型水泥建筑物,如图所示,大门地面宽AB=4m顶部C离地面高度为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论