




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十章圆锥曲线第1节椭圆及其性质题型113 椭圆的定义与标准方程1.(2014 大纲理 6)已知椭圆:的左、右焦点为,离心率为,过的直线交于,两点,若的周长为,则的方程为().A B C D2.(2014 安徽理 14)设分别是椭圆:的左、右焦点,过点的直线交椭圆于,两点,若,轴,则椭圆的方程为.3.(2014 辽宁理 15)已知椭圆:,点与的焦点不重合.若关于的焦点的对称点分别为,线段的中点在上,则.4.(2014 福建理 19)(本小题满分13分)已知双曲线的两条渐近线分别为,.(1)求双曲线的离心率;(2)如图所示,为坐标原点,动直线分别交直线于两点(分别在第一,四象限),且的面积恒为,试探究:是否存在总与直线有且只有一个公共点的双曲线?若存在,求出双曲线的方程;若不存在,说明理由.5.(2016北京理19(1)已知椭圆的离心率为,的面积为1.求椭圆的方程;5.解析可先作出本题的图形:由题设,可得解得.所以椭圆的方程是.6.(2016山东理21(1)平面直角坐标系中,椭圆:的离心率是,抛物线:的焦点是的一个顶点.求椭圆的方程;6.解析由题意知,可得:.因为抛物线的焦点为,所以,所以椭圆的方程为.7.(2016天津理19(1)设椭圆的右焦点为,右顶点为,已知,其中为原点,为椭圆的离心率.求椭圆的方程.7.解析由,即,可得.又,所以,因此,所以椭圆的方程为8.(2017浙江2)椭圆的离心率是().A. B. C. D. 8.解析由椭圆方程可得,所以,所以,.故选B9.(2017江苏17(1)如图所示,在平面直角坐标系中,椭圆的左、右焦点分别为,离心率为,两准线之间的距离为点在椭圆上,且位于第一象限,过点作直线的垂线,过点作直线的垂线求椭圆的标准方程.9.解析设椭圆的半焦距为,由题意,解得,因此,所以椭圆的标准方程为10.(2017山东理21(1)在平面直角坐标系中,椭圆的离心率为,焦距为.求椭圆的方程.10.解析由题意知,所以,因此椭圆的方程为.11.(2107全国1卷理科20(1)已知椭圆,四点,中恰有三点在椭圆上.求的方程;11. 解析根据椭圆对称性,必过,又横坐标为1,椭圆必不过,所以过三点.将代入椭圆方程得,解得,所以椭圆的方程为题型114 椭圆离心率的值及取值范围1.(2013江苏12)在平面直角坐标系中,椭圆的标准方程为,右焦点为,右准线为,短轴的一个端点为,设原点到直线的距离为,到的距离为,若,则椭圆的离心率为.2.(2013福建理14)椭圆的左右焦点分别为,焦距为,若直线与椭圆的一个交点满足,则该椭圆的离心率等于_3.(2014 湖北理 9)已知是椭圆和双曲线的公共焦点,是它们的一个公共点,且,则椭圆和双曲线的离心率的倒数之和的最大值为().A. B. C.3 D.24.(2014 江西理 15)过点作斜率为的直线与椭圆:相交于两点,若是线段的中点,则椭圆的离心率等于.5.(2014 江苏理 17)F1F2OxyBCA如图,在平面直角坐标系中,分别是椭圆的左、右焦点,顶点的坐标为,连结并延长交椭圆于点,过点作轴的垂线交椭圆于另一点,连结(1)若点的坐标为,且,求椭圆的方程(2)若,求椭圆离心率的值6.(2014 北京理 19)(本小题14分)已知椭圆,(1) 求椭圆的离心率.7.(2015安徽理20)设椭圆的方程为,点为坐标原点,点的坐标为,点的坐标为,点在线段上,满足,直线的斜率为.(1)求椭圆的离心率;(2)设点的坐标为,为线段的中点,点关于直线的对称点的纵坐标为,求椭圆的方程.7.解析(1)由题设条件知,点的坐标为,又,从而,即,所以,故(2)由题设条件和(1)的计算结果可得,直线的方程为,点的坐标为设点关于直线的对称点的坐标为,则线段的中点的坐标为又点在直线上,且,从而有,解得,所以,所以椭圆的方程为8.(2015重庆理21)如图所示,椭圆的左、右焦点分别为,过的直线交椭圆于,两点,且.(1)若,求椭圆的标准方程.(2)若,求椭圆的离心率.8.解析(1)由椭圆的定义,故设椭圆的半焦距为,由已知,因此,即,从而故所求椭圆的标准方程为(2)如图所示,连接,由椭圆的定义,从而由,有.又由,知,因此,得.从而.由,知,因此.9.(2016浙江理7)已知椭圆与双曲线的焦点重合,分别为,的离心率,则().A.且 B.且C.且 D.且9. A 解析因为两个圆锥曲线的焦点重合,所以,即.因为,所以,故,故选A.10.(2016江苏10)如图所示,在平面直角坐标系中,是椭圆的右焦点,直线与椭圆交于两点,且,则该椭圆的离心率是10.解析由题意得,直线与椭圆方程联立,可得,.由,可得,则,由,可得,则评注另外也可以结合,得,而,解得,进而设与轴的交点为,则经典转化以为直径的圆过点11.(2016全国丙理11)已知为坐标原点,是椭圆的左焦点,分别为的左,右顶点.为上一点,且轴.过点的直线与线段交于点,与轴交于点.若直线经过的中点,则的离心率为().A.B.C.D.11. A 解析根据题意,作出图像,如图所示.因为点为的中点,所以,又,所以,得,即.故选A.12.(2016浙江理19)如图所示,设椭圆.(1)求直线被椭圆截得的线段长(用、表示);(2)若任意以点为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.12.解析(1)设直线被椭圆截得的线段为,联立方程,得,解得,因此(2)联立圆与椭圆的方程,观察易知圆与椭圆的公共点至多有个.当有个公共点时,由对称性可设轴左侧的椭圆上有两个不同的点,满足记直线,的斜率分别为,所以,所以直线,的方程为,.由(1)知,所以,变形得.由于得因此因为式关于的方程有解的充要条件是,即.因此,任意以点为圆心的圆与椭圆至多有3个公共点的充要条件为,由,得所求离心率的取值范围为.13.(2107全国3卷理科10)已知椭圆的左、右顶点分别为,且以线段为直径
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年土木工程材料试卷及答案
- 2025年社区服务与发展相关考试试卷及答案
- 2025年机器学习工程师考试试题及答案的准备
- 2025年会计专业职称考试试题及答案
- 2025年经济法职业资格考试试题及答案
- 2025年高等数学研究生入学考试试卷及答案
- 语文学科:《高中文言文阅读教学方法设计》
- 我爱你我的家乡650字(11篇)
- 最美那老奶奶的心7篇范文
- 黄姑鱼苗种买卖合同书
- 大模型边缘计算推理优化-洞察阐释
- 《化疗药物不良反应处理》课件
- 校园食品安全和膳食经费管理突出问题专项整治工作方案范文
- 浙江杭州2025年公开招聘农村党务(村务)工作者笔试题带答案分析
- 锂电池、新能源汽车火灾事故灭火救援处置
- 上海宝山区公开招聘社区工作者考试高频题库带答案2025年
- 《老年服务礼仪与沟通》高职养老服务类专业全套教学课件
- 安全隐患的课件
- 小区安全隐患课件
- 国家安全共同守护-国家安全教育日主题班会课件-2024-2025学年初中主题班会课件
- 2025-2030中国倒装芯片球栅阵列行业市场现状供需分析及投资评估规划分析研究报告
评论
0/150
提交评论