相关资料(孙皓).doc

支架加工工艺及专用夹具设计[钻22和14孔]【全套CAD图纸+说明书】【课设资料】

收藏

压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:478449    类型:共享资源    大小:8.51MB    格式:RAR    上传时间:2015-09-21 上传人:好资料QQ****51605 IP属地:江苏
20
积分
关 键 词:
基于 液压 夹紧 支架 专用 夹具 设计 22 全套 cad 图纸 说明书 仿单 资料
资源描述:

【温馨提示】 购买原稿文件请充值后自助下载。

以下预览截图到的都有源文件,图纸是CAD,文档是WORD,下载后即可获得。


预览截图请勿抄袭,原稿文件完整清晰,无水印,可编辑

有疑问可以咨询QQ:414951605或1304139763


摘  要

本文是对支架零件的加工工艺规程进行设计,并针对其中某一道工序进行基于液压的专用夹具设计,并进行了另一工序的普通夹具设计。支架零件作为叉架类零件,其主要加工表面是平面及孔。按照机械加工工艺要求,遵循先面后孔的原则,并将孔与平面的加工明确划分成粗加工和精加工阶段以保证加工精度。基准选择以支架大外圆端面作为粗基准,以支架大外圆端面与两个工艺孔作为精基准,确定了其加工的工艺路线和加工中所需要的各种工艺参数。并按要求对其中一道工序进行了基于液压夹紧的专用夹具设计,在设计中计算了此道工序所受的切削力及切削力矩,进而确定了液压缸的负载,选定整个液压系统的压力,从而确定了液压缸的各参数,绘制了液压夹紧的专用夹具总图。整个加工过程均选用万能机床。


关键词  支架;加工工艺;液压;专用夹具


目  录

摘  要III

AbstractIV

目  录V

1 绪论1

1.1 本课题的研究内容和意义1

1.2 国内外的发展概况1

1.3 本课题应达到的要求2

2 支架零件的三维造型3

3 零件的分析10

3.1 零件的作用10

3.2 零件的工艺分析10

4 工艺规程设计11

4.1 确定毛坯的制造形式11

4.2 工艺过程设计所应采取的相应措施11

4.3 定位基准面的选择11

4.3.1 粗基准的选择11

4.3.2 精基准的选择12

4.4 制定工艺路线12

4.4.1 工艺路线方案一:12

4.4.2 工艺路线方案二:12

4.4.3 工艺方案的比较与分析13

4.5 机械加工余量、工序尺寸及毛坯尺寸的确定13

4.6 确定切削用量及基本工时15

4.6.1 工序三:铣的端面,铣的端面,铣×2的端面。16

4.6.2 工序四:钻-扩-铰-精铰的孔。18

4.6.3 工序五:钻-扩-铰-精铰的孔。20

4.6.4 工序六:钻孔,锪孔,倒角。22

4.6.5 工序七:铣端面。23

4.6.6 工序八:粗镗-半精镗-精镗的孔。23

5 基于液压夹紧的专用夹具设计26

5.1 设计主旨26

5.2 夹具设计26

5.2.1 定位基准的选择26

5.2.2 定位误差分析26

5.2.3 铣夹具设计的基本要求27

5.3 液压缸的设计计算27

5.3.1 切削力及切削力矩的计算与分析27

5.3.2 确定系统的工作压力29

5.3.3 确定液压缸的几何参数30

5.4 确定液压泵规格和电动机功率及型号32

5.4.1 确定液压泵规格32

5.5 确定各类控制阀33

5.6 管道通径与材料及管接头的选用33

6 专用普通夹具设计35

6.1 设计主旨35

6.2 夹具设计35

6.2.1 定位基准的选择35

6.2.2 切削力及夹紧力计算35

6.2.3 钻套、衬套、钻模板设计36

6.2.4 活动V形块的设计36

6.2.5 夹具体的设计36

6.2.6 夹具精度分析36

6.2.7 夹具设计及操作的简要说明37

7 结论与展望38

7.1 结论38

7.2 不足之处及未来展望38

毕业设计小结39

致谢41

参考文献42



1 绪论

1.1 本课题的研究内容和意义

机械的加工工艺及夹具设计是在完成大学的全部课程之后,进行的一次理论联系实际的综合运用,使我对专业知识、技能有了进一步的提高,为以后从事专业技术的工作打下基础。机械加工工艺是实现产品设计,保证产品质量、节约能源、降低成本的重要手段,合理的机械加工工艺过程是企业进行生产准备、计划调度、加工操作、生产安全、技术检测和健全劳动组织的重要依据,也是企业上品种、上质量、上水平,加速产品更新,提高经济效益的技术保证。

合理的机械加工工艺文件不仅能提高一个企业的技术革新能力,而且可以较大程度地提高企业的利润,因而合理地编制零件的加工工艺文件就显得时常重要。机械加工工艺文件的合理性也会受到企业各方面因素的制约,比如企业的生产设备、工人的技术水平及夹具的设计水平等,其中比较重要的是夹具的设计和生产。夹具是机械加工系统的重要组成部分,无论是传统的制造,或是现代制造系统,夹具设计都非常重要。优化夹具设计可以使产品劳动生产率得到提高,降低生产成本,使加工精度得到提高和保证,同时可以拓宽机床的使用范围,而且在保证精度的前提下可使产品效率提高、成本降低。在企业信息化和激烈的市场竞争的要求下,企业对夹具的设计及制造要求更高。所以对机械的加工工艺及夹具设计具有十分重要的意义。

因而不仅要合理结合企业的生产实际来进行零件加工工艺文件的编制,而且还要根据零件的加工要求和先进的加工机床来设计先进高效的夹具。

该课题主要是为了培养学生开发、设计和创新机械产品的能力,要求学生能够结合常规机床与零件加工工艺,针对实际使用过程中存在的金属加工中所需要的三维造型、机床的驱动及工件夹紧问题,综合所学的机械三维造型、机械理论设计与方法、机械加工工艺及装备、液压与气动传动等知识,对高效、快速夹紧装置进行改进设计,从而实现金属加工机床驱动与夹紧的半自动控制。

在设计液压系统装置时,在满足产品工作要求的情况下,应尽可能多的采用标准件,提高其互换性要求,以减少产品的设计生产成本。



内容简介:
编号 无锡 太湖学院 毕业设计(论文) 相关资料 题目: 基于液压夹紧的专用夹具设计 支架零件的工艺工装设计 信机 系 机械工程及自动化 专业 学 号: 0923816 学生姓名: 孙 皓 指导教师: 韩邦华 (职称: 副教授 ) (职称: ) 2013年 5月 25日 nts目 录 一、毕业设计(论文)开题报告 二、毕业设计(论文)外文资料翻译及 原文 三、学生 “毕业论文(论文)计划、进度、检查及落实表 ” 四、实习鉴定表 nts无锡 太湖学院 毕业设计(论文) 开题报告 题目: 基于液压夹紧的专用夹具设计 支架零件的工艺工装设计 信机 系 机械工程及自动化 专业 学 号: 0923816 学生姓名: 孙 皓 指导教师: 韩邦华 (职称: 副教授 ) (职称: ) 2012年 11月 24日 nts课题来源 无锡某企业生产实际 科学依据 (包括课题的科学意义;国内外研究概况、水平和发展趋势;应用前景等) 1、 课题科学 意义 本 课题 是为了培养学生开发和创新机械产品的能力,要求学生能够结合 零件加工工艺与 常规普通铣床,针对 在 实际 使用过程中存在的金属加工机床的 工件夹紧 及 驱动问题,综合所学的机械理论设计与方法、 气动 与 液压 传动等 理论 知识,对 快速 、 高效夹紧装置进行改进设计, 进 而实现金属加工机床 的工件 夹紧 与 驱动 的半自动 化 控制。 2、国内外研究概况及发展前景 夹具从产生到现在,大约可以分为三个阶段:第一个阶段主要表现在夹具与人的结合上,这是夹具主要是作为人的单纯的辅助工具,是加工过程加速和趋于完善;第二阶段,夹具成为人与机床之间的桥梁,夹具的机能发生变化,它主要用于工件的定位和夹紧。人们越来越认识到,夹具与操作人员改进工作及机床性能的提高有着密切的关系,所以对夹具引起了重视;第三阶段表现为夹具与机床的结合,夹具作为机床的一部分,成为机械加工中不可缺少的工艺装备。 在夹具设计过程中 , 对于被加工零件的定位、夹紧等主要问题 ,设计人员一般 都会考虑的比较周全 , 但是 , 夹具设计还经常会遇到一些小问题 , 这些小问题如果处理不好 , 也会给夹具的使用造成许多不便 , 甚至会影响到工件的加工精度。我们把多年来在夹具设计中遇到的一些小问题归纳如下 : 清根问题在设计端面和内孔定位的夹具时 ,会遇到夹具体定位端面和定位外圆交界处清根问题。端面和定位外圆分为两体时无此问题 ,。夹具要不要清根 , 应根据工件的结构而定。如果零件定位内孔孔口倒角较小或无倒角 , 则必须清根 ,如果零件定位孔孔口倒角较大或孔口是空位 , 则不需要清根 , 而且交界处可以倒为圆角 R。端面与外圆定位时 , 与上述相同。让刀 问题在设计圆盘类刀具 (如铣刀、砂轮等 )加工的夹具时 , 会存在让刀问题。设计这类夹具时 , 应考虑铣刀或砂轮完成切削或磨削后 , 铣刀或砂轮的退刀位置 , 其位置大小应根据所使用的铣刀或砂轮的直径大小 , 留出超过刀具半径的尺寸位置即可。更换问题在设计加工结构相同或相似 , 尺寸不同的系列产品零件夹具时 , 为了降低生产成本 ,提高夹具的利用率 ,往往会把夹具设计为只更换某一个或几个零件的通用型夹具 。 由于现代加工的高速发展,对传统的夹具提出了较高要求,如快速、高效、安全等。基于液压夹紧的专用夹具设计,必须计算加工工序所受的切削力及切削力 矩,按照夹紧方式进行夹紧力的计算,进而可以确定液压缸的负载,通过选定整个液压系统的压力,最终可以确定液压缸的各参数。 随着机械工业的迅速发展,对产品的品种和生产率提出了愈来愈高的要求,使多品种,中小批生产作为机械生产的主流,为了适应机械生产的这种发展趋势,必然对机床夹具提出更高的要求。 特别像后钢板弹簧吊耳类不规则零件的加工还处于落后阶段。在今后的发展过程中,应大力推广使用组合夹具 、 半组合夹具 、 可调夹具,尤其是成组夹具。在机床技术向高速 、 高效 、 精密 、 复合 、 智能 、 环保方向发展的带动下,夹具技术正朝着高精高效模块 组合通用经济方向发展。 nts研究内容 通过实际调研和采集相 对 应的设计数据,分析金属切削加工过程中的机床工作台工件夹紧 、 驱动 等方面的 有 关数据, 再 结合 气动 与 液压 传动的相关理论知识,完成液压夹紧传动方案分析及气压原理图的拟定,并进行主要功能元件的设计与选择及传动系统的验算校核等。 拟采取的研究方法、技术路线、实验方案及可行性分析 通过实践与大量搜集、阅读相关资料相结合,在对 金属切削机床、 金属切削加工、机械设计与理论及 气动 与 液压 传动等相关知识充分掌握后,对普通铣床的 夹紧 、 驱动装置进行数学建模,并通过模拟实验分 析建立普通铣床的 驱动 、 夹紧装置 的实体模型,设计液压专用夹具的驱动、夹紧装置,进行现场实验, 以 达到产品的最优化设计。 研究计划及预期成果 研究计划: 2013 年 1 月 12 日 -2013 年 02 月 25 日:按照任务书要求查阅论文相关参考资料,填写毕业设计开题报告书。 2013 年 1 月 30 日 -2013 年 03 月 05 日:填写毕业实习报告。 2013 年 3 月 08 日 -2013 年 03 月 14 日:按照要求修改毕业设计开题报告。 2013 年 3 月 15 日 -2013 年 03 月 21 日:学习并翻译一篇与毕业设计相关的英文材料。 2013 年 3 月 22 日 -2013 年 04 月 28 日: 液压夹具 设计。 2013 年 4 月 29 日 -2013 年 05 月 21 日:毕业论文撰写和修改工作。 预期成果: 通过现场调研、模拟、建模、实验、机器调试,达到产品的最优化设计,大大降低劳动强度和提高生产效率。 在设计液压系统装置时,在满足产品工作要求的情况下,应尽可能多的采用标准件,提高其互换性要求,以减少产品的设计生产成本。 nts特色或创新之处 适用于现代加工企业 安全 、 高效 的液压夹具设计、夹紧装置的优化设计,可 减少工人的劳动强度、 降低 机械加工工艺时间和机械零件的生产成本。 已具备的条件和尚需解决的问题 针对实际使用过程中存在的金属加工工艺文件编制、工件夹紧及快速 、 高效夹具设计问题,综合所学的机械理论设计与方法与液压与气动传动等方面的知识,实现适合于现代加工制造业、夹紧装置的优化设计,进而提高学生开发和创新机械产品的能力。 指导教师意见 指导教师签名: 年 月 日 教研室(学科组、研究所)意见 教研室主任签名: 年 月 日 系意见 主管领导签名: 年 月 日 nts英文原文 Basic Machining Operations and Cutting Technology Machine tools have evolved from the early foot-powered lathes of the Egyptians and John Wilkinsons boring mill. They are designed to provide rigid support for both the workpiece and the cutting tool and can precisely control their relative positions and the velocity of the tool with respect to the workpiece. Basically, in metal cutting, a sharpened wedge-shaped tool removes a rather narrow strip of metal from the surface of a ductile workpiece in the form of a severely deformed chip. The chip is a waste product that is considerably shorter than the workpiece from which it came but with a corresponding increase in thickness of the uncut chip. The geometrical shape of workpiece depends on the shape of the tool and its path during the machining operation. Most machining operations produce parts of differing geometry. If a rough cylindrical workpiece revolves about a central axis and the tool penetrates beneath its surface and travels parallel to the center of rotation, a surface of revolution is produced, and the operation is called turning. If a hollow tube is machined on the inside in a similar manner, the operation is called boring. Producing an external conical surface uniformly varying diameter is called taper turning. If the tool point travels in a path of varying radius, a contoured surface like that of a bowling pin can be produced; or, if the piece is short enough and the support is sufficiently rigid, a contoured surface could be produced by feeding a shaped tool normal to the axis of rotation. Short tapered or cylindrical surfaces could also be contour formed. Multiple-edged tools can also be used. Drilling uses a twin-edged fluted tool for holes with depths up to 5 to 10 times the drill diameter. Whether the drill turns or the workpiece rotates, relative motion between the cutting edge and the workpiece is the important factor. In milling operations a rotary cutter with a number of cutting edges engages the workpiece, which moves slowly with respect to the cutter. Plane or contoured surfaces may be produced, depending on the geometry of the cutter and the type of feed. Horizontal or vertical axes of rotation may be used, and the feed of the workpiece may be in any of the three coordinate directions. Introduction of Machining Machining as a shape-producing method is the most universally used and the most important of all manufacturing processes. Machining is a shape-producing process in which a power-driven device causes material to be removed in chip form. Most machining is done with equipment that supports both the work piece and cutting tool although in some cases portable equipment is used with unsupported workpiece. Low setup cost for small Quantities. Machining has two applications in manufacturing. For casting, forging, and press working, each specific shape to be produced, even one part, nearly always has a high tooling cost. The shapes that may be produced by welding depend to a large degree on the shapes of raw material that are available. By making use of generally high cost equipment but without special tooling, it is possible, by machining; to start with nearly any form ntsof raw material, so long as the exterior dimensions are great enough, and produce any desired shape from any material. Therefore .machining is usually the preferred method for producing one or a few parts, even when the design of the part would logically lead to casting, forging or press working if a high quantity were to be produced. Close accuracies, good finishes. The second application for machining is based on the high accuracies and surface finishes possible. Many of the parts machined in low quantities would be produced with lower but acceptable tolerances if produced in high quantities by some other process. On the other hand, many parts are given their general shapes by some high quantity deformation process and machined only on selected surfaces where high accuracies are needed. Internal threads, for example, are seldom produced by any means other than machining and small holes in press worked parts may be machined following the press working operations. Primary Cutting Parameters The basic tool-work relationship in cutting is adequately described by means of four factors: tool geometry, cutting speed, feed, and depth of cut. The cutting tool must be made of an appropriate material; it must be strong, tough, hard, and wear resistant. The tool s geometry characterized by planes and angles, must be correct for each cutting operation. Cutting speed is the rate at which the work surface passes by the cutting edge. It may be expressed in feet per minute. For efficient machining the cutting speed must be of a magnitude appropriate to the particular work-tool combination. In general, the harder the work material, the slower the speed. Feed is the rate at which the cutting tool advances into the workpiece. Where the workpiece or the tool rotates, feed is measured in inches per revolution. When the tool or the work reciprocates, feed is measured in inches per stroke, Generally, feed varies inversely with cutting speed for otherwise similar conditions. The depth of cut, measured inches is the distance the tool is set into the work. It is the width of the chip in turning or the thickness of the chip in a rectilinear cut. In roughing operations, the depth of cut can be larger than for finishing operations. The Effect of Changes in Cutting Parameters on Cutting Temperatures In metal cutting operations heat is generated in the primary and secondary deformation zones and these results in a complex temperature distribution throughout the tool, workpiece and chip. A typical set of isotherms is shown in figure where it can be seen that, as could be expected, there is a very large temperature gradient throughout the width of the chip as the workpiece material is sheared in primary deformation and there is a further large temperature in the chip adjacent to the face as the chip is sheared in secondary deformation. This leads to a maximum cutting temperature a short distance up the face from the cutting edge and a small distance into the chip. Since virtually all the work done in metal cutting is converted into heat, it could be expected that factors which increase the power consumed per unit volume of metal removed will increase the cutting temperature. Thus an increase in the rake angle, all other parameters remaining constant, will reduce the power per unit volume of metal removed and the cutting temperatures will reduce. When considering increase in unreformed chip thickness and cutting speed the ntssituation is more complex. An increase in undeformed chip thickness tends to be a scale effect where the amounts of heat which pass to the workpiece, the tool and chip remain in fixed proportions and the changes in cutting temperature tend to be small. Increase in cutting speed; however, reduce the amount of heat which passes into the workpiece and this increase the temperature rise of the chip m primary deformation. Further, the secondary deformation zone tends to be smaller and this has the effect of increasing the temperatures in this zone. Other changes in cutting parameters have virtually no effect on the power consumed per unit volume of metal removed and consequently have virtually no effect on the cutting temperatures. Since it has been shown that even small changes in cutting temperature have a significant effect on tool wear rate it is appropriate to indicate how cutting temperatures can be assessed from cutting data. The most direct and accurate method for measuring temperatures in high -speed-steel cutting tools is that of Wright & Trent, which also yields detailed information on temperature distributions in high-speed-steel cutting tools. The technique is based on the metallographic examination of sectioned high-speed-steel tools which relates microstructure changes to thermal history. Trent has described measurements of cutting temperatures and temperature distributions for high-speed-steel tools when machining a wide range of workpiece materials. This technique has been further developed by using scanning electron microscopy to study fine-scale microstructure changes arising from over tempering of the tempered martens tic matrix of various high-speed-steels. This technique has also been used to study temperature distributions in both high-speed -steel single point turning tools and twist drills. Wears of Cutting Tool Discounting brittle fracture and edge chipping, which have already been dealt with, tool wear is basically of three types. Flank wear, crater wear, and notch wear. Flank wear occurs on both the major and the minor cutting edges. On the major cutting edge, which is responsible for bulk metal removal, these results in increased cutting forces and higher temperatures which if left unchecked can lead to vibration of the tool and workpiece and a condition where efficient cutting can no longer take place. On the minor cutting edge, which determines workpiece size and surface finish, flank wear can result in an oversized product which has poor surface finish. Under most practical cutting conditions, the tool will fail due to major flank wear before the minor flank wear is sufficiently large to result in the manufacture of an unacceptable component. Because of the stress distribution on the tool face, the frictional stress in the region of sliding contact between the chip and the face is at a maximum at the start of the sliding contact region and is zero at the end. Thus abrasive wear takes place in this region with more wear taking place adjacent to the seizure region than adjacent to the point at which the chip loses contact with the face. This result in localized pitting of the tool face some distance up the face which is usually referred to as catering and which normally has a section in the form of a circular arc. In many respects and for practical cutting conditions, crater wear is a less severe form of wear than flank wear and consequently flank wear is a more common tool failure criterion. However, since various authors have shown that the temperature on the face increases more rapidly with increasing cutting ntsspeed than the temperature on the flank, and since the rate of wear of any type is significantly affected by changes in temperature, crater wear usually occurs at high cutting speeds. At the end of the major flank wear land where the tool is in contact with the uncut workpiece surface it is common for the flank wear to be more pronounced than along the rest of the wear land. This is because of localised effects such as a hardened layer on the uncut surface caused by work hardening introduced by a previous cut, an oxide scale, and localised high temperatures resulting from the edge effect. This localised wear is usually referred to as notch wear and occasionally is very severe. Although the presence of the notch will not significantly affect the cutting properties of the tool, the notch is often relatively deep and if cutting were to continue there would be a good chance that the tool would fracture. If any form of progressive wear allowed to continue, dramatically and the tool would fail catastrophically, i. e. the tool would be no longer capable of cutting and, at best, the workpiece would be scrapped whilst, at worst, damage could be caused to the machine tool. For carbide cutting tools and for all types of wear, the tool is said to have reached the end of its useful life long before the onset of catastrophic failure. For high-speed-steel cutting tools, however, where the wear tends to be non-uniform it has been found that the most meaningful and reproducible results can be obtained when the wear is allowed to continue to the onset of catastrophic failure even though, of course, in practice a cutting time far less than that to failure would be used. The onset of catastrophic failure is characterized by one of several phenomena, the most common being a sudden increase in cutting force, the presence of burnished rings on the workpiece, and a significant increase in the noise level. Mechanism of Surface Finish Production There are basically five mechanisms which contribute to the production of a surface which have been machined. These are: (l) The basic geometry of the cutting process. In, for example, single point turning the tool will advance a constant distance axially per revolution of the workpiecc and the resultant surface will have on it, when viewed perpendicularly to the direction of tool feed motion, a series of cusps which will have a basic form which replicates the shape of the tool in cut. (2) The efficiency of the cutting operation. It has already been mentioned that cutting with unstable built-up-edges will produce a surface which contains hard built-up-edge fragments which will result in a degradation of the surface finish. It can also be demonstrated that cutting under adverse conditions such as apply when using large feeds small rake angles and low cutting speeds, besides producing conditions which lead to unstable built-up-edge production, the cutting process itself can become unstable and instead of continuous shear occurring in the shear zone, tearing takes place, discontinuous chips of uneven thickness are produced, and the resultant surface is poor. This situation is particularly noticeable when machining very ductile materials such as copper and aluminum. (3) The stability of the machine tool. Under some combinations of cutting conditions; workpiece size, method of clamping ,and cutting tool rigidity relative to the machine tool structure, instability can be set up in the tool which causes it to vibrate. Under some conditions this vibration ntswill reach and maintain steady amplitude whilst under other conditions the vibration will built up and unless cutting is stopped considerable damage to both the cutting tool and workpiece may occur. This phenomenon is known as chatter and in axial turning is characterized by long pitch helical bands on the workpiece surface and short pitch undulations on the transient machined surface. (4)The effectiveness of removing swarf. In discontinuous chip production machining, such as milling or turning of brittle materials, it is expected that the chip (swarf) will leave the cutting zone either under gravity or with the assistance of a jet of cutting fluid and that they will not influence the cut surface in any way. However, when continuous chip production is evident, unless steps are taken to control the swarf it is likely that it will impinge on the cut surface and mark it. Inevitably, this marking besides looking. (5)The effective clearance angle on the cutting tool. For certain geometries of minor cutting edge relief and clearance angles it is possible to cut on the major cutting edge and burnish on the minor cutting edge. This can produce a good surface
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:支架加工工艺及专用夹具设计[钻22和14孔]【全套CAD图纸+说明书】【课设资料】
链接地址:https://www.renrendoc.com/p-478449.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!