量子力学讲义chapter3.ppt_第1页
量子力学讲义chapter3.ppt_第2页
量子力学讲义chapter3.ppt_第3页
量子力学讲义chapter3.ppt_第4页
量子力学讲义chapter3.ppt_第5页
已阅读5页,还剩90页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第三章矩阵力学基础 力学量和算符 复旦大学苏汝铿 第三章矩阵力学基础 力学量和算符 本章目的 建立另外一套量子化的方案 即通过算符的对易关系进行正则量子化的方案研究量子力学中的算符的性质 特别是线性厄米算符讨论力学量的测量 特别是不确定性原理 以及力学量随时间的变化守恒律 3 1力学量的平均值 问题 何谓波函数完全地描述了一个量子态 力学量用算符表示的实质是什么 为什么力学量可用算符表示 3 1力学量的平均值 坐标函数的平均值 3 1力学量的平均值 3 1力学量的平均值 3 1力学量的平均值 3 1力学量的平均值 3 1力学量的平均值 3 1力学量的平均值 结论 平均值公式 3 2算符的运算规则 定义 3 2算符的运算规则 算符运算规则 3 2算符的运算规则 3 2算符的运算规则 3 2算符的运算规则 3 2算符的运算规则 3 2算符的运算规则 3 2算符的运算规则 3 2算符的运算规则 3 2算符的运算规则 3 2算符的运算规则 3 2算符的运算规则 3 2算符的运算规则 3 2算符的运算规则 3 2算符的运算规则 算符的矩阵形式 二维矢量空间 3 2算符的运算规则 3 2算符的运算规则 3 2算符的运算规则 3 2算符的运算规则 3 2算符的运算规则 3 2算符的运算规则 结论 体系的一个量子态 希尔伯特空间中一个向量给定一组基矢 即给定一个表象 量子态 波函数一个算符 一个矩阵 3 3厄米算符的本征值和本征函数 厄米算符的引入 3 3厄米算符的本征值和本征函数 3 3厄米算符的本征值和本征函数 3 3厄米算符的本征值和本征函数 3 3厄米算符的本征值和本征函数 3 3厄米算符的本征值和本征函数 厄米算符的性质厄米算符的平均值是实数 充分性 3 3厄米算符的本征值和本征函数 厄米算符的平均值是实数 必要性 3 3厄米算符的本征值和本征函数 厄米算符的平均值是实数 必要性 3 3厄米算符的本征值和本征函数 厄米算符的本征值为实数 3 3厄米算符的本征值和本征函数 厄米算符属于不同本征值的本征函数正交 3 3厄米算符的本征值和本征函数 3 3厄米算符的本征值和本征函数 厄米算符的简并本征函数经重新组合后可以正交归一 3 3厄米算符的本征值和本征函数 3 3厄米算符的本征值和本征函数 厄米算符的本征函数有完备性 3 3厄米算符的本征值和本征函数 厄米算符的本征函数有封闭性 3 3厄米算符的本征值和本征函数 3 3厄米算符的本征值和本征函数 结论厄米算符的本征函数系 正交 归一 完备 封闭厄米算符的本征值 平均值均为实数量子力学中的力学量对应线性厄米算符 3 4连续谱本征函数 线性厄米算符的本征函数示例 3 4连续谱本征函数 3 4连续谱本征函数 3 4连续谱本征函数 连续谱本征函数归一化无穷空间 归delta函数 连续谱箱归一化 引入周期性边界条件 分立谱 3 4连续谱本征函数 周期性边界条件 3 4连续谱本征函数 3 4连续谱本征函数 3 4连续谱本征函数 3 4连续谱本征函数 3 4连续谱本征函数 3 5量子力学中力学量的测量值 在F的本征态中测量F有准确值 3 5量子力学中力学量的测量值 3 5量子力学中力学量的测量值 在非F的本征态中测量F 有可能值及平均值 3 5量子力学中力学量的测量值 不同力学量同时有确定值的条件若 F G 0 必有共同本征函数系充要条件有简并时可重新组合 3 5量子力学中力学量的测量值 注意 如果F和G不对易 必无共同本征函数系 但不排除在某些特殊态中测量时有确定值 例如Lx和Ly不对易 但在中测量Lx Ly均得到零 3 5量子力学中力学量的测量值 完全集如 px py pz H L 2 Lz 等等简并来自不完全测量 3 6不确定性原理 问题 若算符A B不对易 在A本征态中测A有确定值 测B如何 在非A 非B的本征态中测A及B 结果如何 3 6不确定性原理 3 6不确定性原理 3 6不确定性原理 3 6不确定性原理 3 6不确定性原理 讨论 不确定性原理是波粒二象性的反映 与是否测量无关单缝衍射实验零点能 3 6不确定性原理 3 6不确定性原理 3 6不确定性原理 3 6不确定性原理 角动量算符 3 6不确定性原理 互补原理及其哲学探讨 3 7力学量随时间的变化 守恒量和运动积分 算符的运动方程式 3 7力学量随时间的变化 守恒量和运动积分 3 7力学量随时间的变化 守恒量和运动积分 3 7力学量随时间的变化 守恒量和运动积分 3 7力学量随时间的变化 守恒量和运动积分 若F不显含t 且 F H 0 则F守恒守恒量在任何态下的平均值与t无关在任何态下 测F 可能值 出现各种可能值的几率分布与t无关若t 0时 F有确定值 t t时也有确定值若t 0时 F无确定值 t t时也无确定值守恒量对应好量子数若F与G不对易 且F G均为守恒量 能级简并 3 7力学量随时间的变化 守恒量和运动积分 宇称算符P直角坐标x x y y z z球坐标r不变 宇称算符既是厄米的 又是么正的 3 7力学量随时间的变化 守恒量和运动积分 宇称算符P本征值为 1或 1若体系的哈密顿量H在空间反演下不变 则宇称算符P与H对易 P H 0宇称守恒 若初态有确定宇称 则以后任何时刻 体系的状态均有相同宇称 3 7力学量随时间的变化 守恒量和运动积分 宇称算符P 3 7力学量随时间的变化 守恒量和运动积分 宇称算符P偶宇称算符奇宇称算符 3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论