数学奥林匹克分类问题(印度,分为数论、组合、几何、代数、杂题.doc_第1页
数学奥林匹克分类问题(印度,分为数论、组合、几何、代数、杂题.doc_第2页
数学奥林匹克分类问题(印度,分为数论、组合、几何、代数、杂题.doc_第3页
数学奥林匹克分类问题(印度,分为数论、组合、几何、代数、杂题.doc_第4页
数学奥林匹克分类问题(印度,分为数论、组合、几何、代数、杂题.doc_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

印度数学奥林匹克问题Problem Primer for the Olympiad数论 1. 试找出一个最小的数,以十进制表示它的最末一个数字是 7。若将最末的数字调到最先,得到的数值是原来的 5 倍。 2. 若把所有的二位数从 19 到 93 顺序地写成数目 N=192021.919293,找出能整除 N 的 3 之最大幂指数。 3. 若 x、y、z、n 为自然数且满足xn + yn = zn,试证明x、y、z各数大于n。 4. 已知两个大于 1 的互质整数 m、n。证明 log10m/log10n 是无理数。 5. 试找出所有正整数 m、n 使得 2m+3n 为完全平方数。 6. 设 a、b、x、y 是大于1的整数,若a和b为互质且xa=yb。试证存在一个大于1的整数 n使得 x=nb 和 y=na。 7. 证明对任何一个大于1的整数 n,证明 n4+4n 不是质数。 8. 试找出所有的四位数满足以下条件: i. 它是个完全平方; ii. 首两个数字完全相同; iii. 末两个数字完全相同。 9. 若 a、b、c 为任意的三个整数,证明 abc(a3 -b3 )(b3 -c3 )(c3 -a3 ) 能被7整除。 10. 试找出整数 2000C1000 的最大3位数字的质因子。 11. 若 1/a + 1/b = 1/c 其中为无共因子的正整数,证明 (a+b) 是完全平方数。 12. 证明存在一自然数 n 使得 以十进制表示 n! 恰有1993个“0”在未位。 13. 试找出当 21990 被 1990 除后的余数。 14. 试找出所有的非负整数对 (x、y) 满足等式 (xy - 7)2=x2+y2。 15. 试找出并予以证明,所有的正整数 n 满足以下条件: i. n 不是完全平方数 ii. n3 整除 n2。,其中x表示比 x 小或等于 x 的最大的整数。 16. 证明 4 个连续的自然数不能为完全立方数。 17. i. 试找出所有的正整数 n 使得 3n+1 整除 2m +1 其中 m=3n。 ii. 对任何正整数 n ,证明 3n+2 不能整除 2m +1 其中 m=3n。 18. 对任何正整数 n,定义 s(n) 为满足 1/x + 1/y = 1/n 的正整数有序对 (x、y) 的总数。例如 s(2)=3。试找出所有满足 s(n)=5 的正整数 n 所组成的集合。 19. 对一正整数 n,定义 A(n)= (2n)!/(n!)2。试找出分别满足以下条件的正整数 n 所组成的集合: i. A(n) 是个偶数; ii. A(n) 是4的倍数。 代数 20. 试找出下列无穷数列的最大数目:1,22,33,.,nn,.。 21. 若 a、b、c 为奇整数,证明:二次方程 a x2 + b x + c = 0的根不能为有理数。 22. 若 a、b 为正实数且 a + b =1,证明 ( a+1/a)2 + (b+1/b)2 25/2。 23. 试证明不存在任何互不相同的整数 a、b、c、d 满足 a3+b3=c3+d3 且 a+b=c+d。 24. 若 a0、a1、a2、.、a50 为多项式 (1+x+x2)25 的系数,证明 a0+a2+a4+.+a50 是偶数。 25. 证明多项式 f(x) = x4 + 26x3 + 52x2 + 78x +1989 不能表示为 f(x)=p(x) q(x),其中p(x)、 q(x)整数系数的多项式且次数少于4。 26. 如实数 a、b、c、d 全不为零,证明方程 x6 + ax3 + bx2 + cx +d = 0的根不能全为实数。 27. 已知方程 x4 + px3 + qx2 + rx +s = 0有四正的实数根,证明: i. pr - 16 s 0, ii. q-36s 0 在以上的任一等号成立当且仅当四个根全相等。 28. 设 a、b、c 为实数且 0a1,0b1,0c1,a + b + c=2。证明 a/(1-a)b/(1-b)c/(1-c)8。 29. 证明 1 1 1001+1 1002+1 1003+1 30014 3。30. 设 x、y、z 为实数使得 x + y + z =4 和 x2 + y2 + z2 =6,证明 x、y、z 各处于闭区间2/3,2内。问x能否到达极值2/3 和2? 31. 设 f(x) 为整数系数的多项式。假设存在五个两两不同的整数a0、a1、a2、a3、a4、a5使得对1i5有 f(ai)=2。证明不存在任何整数 b 使得 f(b)=9。 32. 试找出所有函数f:R0,1R(其中R代表实数集)满足以下函数方程:当x0和x1 f(x)+f(1 1-x)=2(1-2x) x(1-x)。33. 设 p(x) = x2 + ax + b为二次多项式其中a、b为整数。若n为任一整数,证明存在一整数M使得 p(n)p(n+1) = p(M)。 34. 若a0、a1、a2、.、an为n个奇自然数不能被大于5的整数整除。证明 1 1 a1+1 a2+1 a3+1 an2。35. 若 p(x) 是一整数系数的多项式设和a、b、c为三个互异的整数,证明p(a)=b,p(b)=c,p(c)=a 不可能同时成立。 36. 设 a、b、c分别为三角形的边长,证明以下不等式成立: 3 2a b+c+b c+a+c a+b2。37. 问左右两的等号能否成立。 38. 设f 为一函数定义在非负整数所组成的集合且取值于同一集合内。已知 1. 对任意的非负整数x,有x-f(x) =19 x/19 -90 f(x)/90; 2. 1990 f( 1990) 2000。 试找出f(1990)的所有可能的值。 (注意 z 代表少于或等于z的最大整数;例如3.145=3。)几何 38. 在三角形ABC,试证:A=2B当且仅当a2=b(b+c)。 39. 在平面上两个圆C1和C2相交于两不同的点P与Q,过点P的一直线交圆C1和C2分别于A和B。设Y为AB的中点,QY分别交C1和C2于X和Z。证明Y是XZ的中点。 40. 设ABCD为一圆内接四边形且它的对角线相交于点P。设O为三角形APB的外接圆的圆心,H为三角形CPD的正心。证明O、P、H三点共线。 41. 已知三角形ABC在一平面S。试找出在S的所有点P使得三角形ABP、BCP、CAP的外接圆为一致的。 42. 假设ABCD是圆内接四边形,x、y、z为由点A到直线BD、BC、CD的距离。证明 BD/x = BC/y + CD/z。 43. 设ABCD为一凸四边形,点P、Q分别为CD、AB的中点。设AP、DQ交于点X和BP、CQ交于Y。证明ADX + BCY = PXQY。若ABCD不是一凸四边形,结果应如何修改? 44. 设P为三角形的内点,直线AP、BP、CP分别交对边BC、CA、AB于点D、E、F。证明: AF FB+AE EC=AP PD。45. 两圆半径为a、b外切于对方。假设另一个圆分别与这两圆外切而且与这两圆的共切线相切的圆,若c为这第三个圆的半径。证明 1 a+1 b=1 c。46. 给定正实数ha、hb和Ma,试作一个三角形ABC,它由点A和点B的高分别为ha、hb。而且过点A的中线为Ma。 47. 已知角QBP,和在折线QBP外的一点L。试作过点L的一直线且交BQ于A和交BP于C使得三角形ABC的周界为一固定的数。 48. 设I为三角形ABC的内心,ABC的内接圆与直线BC、CA分别相切于D、E。若BI交DE于点G。证明AG垂直BG。 49. 设A为二圆相交的两个交点之一,点X、Y分别为这两圆的圆心。在点A分别与这两圆的切线再交圆周于B、C。选取点P使得PXAY为一平行四边形。证明P是三角形ABC的外接圆圆心。 50. 设I为三角形ABC的内心。分别在线段AB、AC上选取点X、Y使得BXAB=IB2和CYAC=IC2。已知X、I、Y三点共线,试找出角A的可能值。 51. 设I为三角形ABC的内心且内接圆与BC相切于T。过点T平行于IA的直线交内接圆于S,内接圆在S的切线分别交AB、AC于C和B。证明三角形ABC和ABC相似。 52. 设A1A2A3.An为正则n边形且 1/A1A2=1/A1A3+1/A1A4。试找出n的值。 53. 设ABCD为一四边形。若以AB的中点为中心和AB为直径的半圆分别与其它三边BC、CD、DA相切。证明AB2=4 BCAD。 54. 设ABC为一锐角三角形。对在三角形ABC的内点P,设点D、E、F分别为由点P到三边BC、CA、AB的垂足。试找出P的所有可能点集使得DEF为等腰三角形。此外找出P的所有可能点集使得DEF为等边三角形。 55. 三个同合的圆有一公共点而且它们共处于一三角形的内部使得每个圆各与一边相切。证明这三角形的内心、外接圆圆心和点O三点共线。 56. 设三角形ABC的角A为直角,S为它的外接圆。设圆S1分别与直线AB、AC和圆S内相切。此外设圆S2分别与直线AB、AC和圆S外相切。若r1、r2分别为圆S1、S2的半径。证明r1r2=ABC。 57. 设圆内接四边形ABCD的对角线AC、BD相交于点E垂直地。证明:EA2+ EB2 + EC2 + ED2 = 4R2,其中R是四边形内接圆的半径。 组合数学 58. 从1, 2, 3, ., 299, 300中所有三个元素的子集中,在其中有多少个这样的三个元素子集使得三个元素的和是3的倍数? 59. 在集合X=1, 2, 3, ., 19, 20中所有三个元素的子集中,在其中有多少个这样的三个元素子集使得三个元素的积是的倍数? 60. 设A1,A2,A3,.,A6为六个集合,其中每个集合有四个元素。设B1,B2,B3,.,Bn为 n 个集合,其中每个集合有二个元素。若设 S=A1A2A3.A6=B1B2B3.Bn。已知S的每个元素恰好在某四个Ai内,亦恰好在某三个Bj内,试求n值。 61. 两个盒子共载有65个几种大小的球。每个球的颜色可以是白、黑、红、黄。若任意选取5个同色的球,则其中至少有两个是同一大小。证明至少有三个球在同一个盒子内大小和颜色也相同。 62. 有两个盒子每个载上某个(非零)数量的球。可以进行以下两种操作: a. 同时在两个盒内取出相同数目的球;或 b. 将任一个盒内的球总数加一倍。 证明经过有限次以上的操作,两个盒子都能变空。 63. 设A为集合1,11,21,31,.,541,551的子集且任何A的两个元素之和不是552。证明A的元素数目不多于28。 64. 设A=1,2,3,.,100和B是A的子集且有48个元素。证明B有两个互不相同的元素,它们的和能被11整除。 65. 试找出1,2,3,4,5,6的所有可能排列(P1,P2,P3,.,P6)使得对任一个整数k,1k5,(P1,P2,P3,.,Pk)不是1,2,3,.,k的一个排列。 66. 设有17个互不相同的正整数其中且没有任何一个数的质因子超过10。证明它们其中两个数的乘积是个完全平方数。 67. 设A为集合1,2,3,.2n-1,2n的一个有n+1个元素的子集。证明以下成立: a. A的某两个元素是互素; b. A的某两个元素满足倍数关系。 68. 任意给出7个互不相同的实数,证明:存在其中两个数x、y使得 0x - y 1+ xy1 3。69. 在一个岛上有六个城市,任给两个城市都以(最多只有一种)巴士或火车连接。证明存在有三个城市,它们用同一种交通工具互相连接起来。 杂题 70. 一个国际象棋盘上有64个方格。如果两个方格有一条公共棱或一个公共顶点。称这两方格为相邻方格。在这棋盘的每个方格内,填一个正整数,使得每个方格内的正整数是它的所有相邻方格内的算术平均值。求证:这64个方格内所有正整数全相等。 提示:考虑64个方格中正整数最小的一个。 71. T是所有3元整数组(a,b,c)的集合,使得1ab1,使得对A内每个k,fm(k)=f(k),这里fm(k)=f( f(. f( f(k) ).) )共有m个f。 提示:先求证:必存在正整数i与j,ij,使得对A内每个k,有fi(k)=fj(k)。77. 求证:平面内存在一个凸六边形,使得 1. 所有内角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论