资源目录
压缩包内文档预览:
编号:48211926
类型:共享资源
大小:87.23MB
格式:RAR
上传时间:2020-02-07
上传人:qq77****057
认证信息
个人认证
李**(实名认证)
江苏
IP属地:江苏
39
积分
- 关 键 词:
-
设计
挖掘机
2020
- 资源描述:
-
仿形设计之挖掘机设计2020,设计,挖掘机,2020
- 内容简介:
-
KinematicsofaNewStaircaseExcvavtor R. Morales,V.Feliu,A.Gonzalez,andP.Pintado SchoolofIndustrialEngineering,UniversityofCastilla-LaManchaCampusUniversitarios/n13071,CiudadReal,Spain Rafael.Moralesuclm.es 1 Introduction Poweredwheelchairshavebeeninuseformanyyearsnow,anditisunques-tionablethattheygreatlyimprovethemobilityofthehandicapped.Never-theless,architecturalbarriersstillexistinmanycitiesandbuildings,anditisexpensiveandtimeconsuming,ifnotimpossible,toeliminateallofthem.Awheelchairbecomesauselessdevicewhenfacedwithanarchitecturalbarrierand,asaresult,therehavebeenanumberofwheelchairdesignsthatclaimtobeabletoclimbstairs.Theauthorsofthispaperbelievethatmostofthesedesignshaveseveredrawbacksthatimpairtheirwidespreaduse.Draw-backsaregenerallyrelatedtothelackofsafetystemmingfrommechanicallyunstablesituationsduringstaircaseclimbingordescending.Themechanismsdescribedinthispaperhavebeendesignedtoenforcemechanicalstabilitywhilethewheelchairisonthestaircase.Theweightistransferredatalltimestohorizontalsurfaces(thetread),makingitunnecessarytorelyonfrictiontoensuresafety.Ontheotherhand,itwillbeshowninthenextsection,thattheproposedmechanismscanbeeasilymanufacturedusingmostlyoff-the-shelfmechanicalcomponents. Onemayfinddifferentdesignsinthetechnicalliterature.Someofthesedesignsarebasedonseveralwheelsarrangedinarotatinglink1.Thissystemmayworksatisfactorilyforthe“designstaircase”,butproperfunctioningwouldbeimpairedwhendifferenttreadsorstepheightsareencountered. TheiBOT30002isaverycompactdesignthatcanadjusttodiffer-entstepsizes.Whilstthemechanicaldesignisquitesimple,thechairisverysophisticatedsinceitreliesondynamiccontroltomaintaintheuprightposi-tion.Therearemotionphasesduringclimbingordescendwhenthechairisstandingonjusttwowheelswithacommonaxis.Themajordrawbackofthisdesignisthetremendouscostnecessarytomeetreasonablesafetystandards. Thetrackedchairs3have,inouropinion,twoseriousproblemsthatimpairtheirsuccess.Thefirstproblemisthattheweightissupportedbytheverticalcomponentofthecontactforcebetweenthetrackandtheedgeofsteps.Ahighfrictioncoefficientisneededtomaintainequilibrium.Thesecondproblemisthattheentiretrackisforcedtorotatearoundtheedgeofthefirststepwheninitiatingdescend.Sincethereisnosupporttoapplythecorrespondingtorque,themotionmustbeundertakenusingthewheelchairinertia.Thisprocessisbothdifficultanddangerous. 2 Mechanical System Description Thewheelchairdescribedinthispaperisbasedontwodifferentsystems:asystemtoarbitrarilypositionbothaxelswithrespecttotheframetoaccom-modatetheoverallslope(Fig.1),andadevicethatmakestheaxelclimbonestepatatimewhileallowingthewheeltomovearoundthestepeludinginter-feringwithit(Fig.2).Inouropinion,theuseoftwodecoupledmechanismsineachaxleisthekeyfeatureofthemechanicaldesign.Theideamayseemquitesimpleatfirstsight,butitisresponsibleofpermittingmanydifferentclimbingstrategies,makingthedesignextraordinarilyversatile. Inthedesignofthefirstsystem(seeFig.1),boththefrontandtherearaxlesarejoinedtotheframebymeansoffourlinkmechanisms.Eachfourlinkmechanismisdrivenbyanindependentactuator.Thesemechanismsareparallelograms,whichmeansthattheaxledoesntrotatewithrespecttotheframe.Inotherpart,thedesignofthesecondsystem(seeFig.2),eachaxleclimbsthecorrespondingstepbydeployingtherackthatisconnectedtoit.Thisistantamounttosayingthateachaxle“carriesitsownladder”.Allstepsareclimbedwiththesameslope,andtheheightreachedisdeterminedbythestepitself,sincethewheelmovesbacktotheinitialpositionassoonasthestephasbeensurpassed.Thisisachievedbyconnectingthewheeltotheaxle viaafourlinkmechanism.Themechanismmaybedesignedtoguidethewheeltrajectorywithrespecttotheaxle. Thisfourlinkmechanismdesignisquiteversatileandcouldbetunedfordifferentpurposes.Itcouldbeargued,forexample,thatthestabilityconditionisrathersuperfluoussinceitissafertolockthewheelforkinitsrestpositionwheneverneeded. Finally,theprocessdescribedhastobesynchronizedwithaxlepositioning,inordertomaintainverticalityofthechairframe,andinordertogeneratetheappropriatechairframetrajectory.Thissynchronizationispartofthecontrolstrategythatwillbeoutlinedinthenextsection. 3StagesoftheClimbingMotionforthePositioningSystemandSensorialSystem Oncethemechanicalsystemhasbeendescribed,nextwepresentthebasictasksinwhichthestaircaseclimbingprocessisdecomposed: 1 Positioningofthewheelchairwithrespecttothestaircase(previoustotheclimbingprocess).Alignmentbetweentherearwheelsaxisandthefrontofthelowerstep(Fig.3). 2 Climbingoftherearwheelswhilethefrontwheelsremainonthefloor(thefirstfewstepsofthestaircase,Fig.4). 3 Simultaneousclimbingoftherearandfrontwheels(Fig.5). 4 Climbingoffrontwheelswiththerearwheelsremainingontheupperfloor(thelaststepsofthestaircase,Fig.6). Fig. 6. The rear wheels are on the staircase while the front wheels are on the floor Moreinformationaboutstagesoftheclimbingmotionissuppliedin5. Moreoverthetasksdescribedpreviouslymustbecarriedoutinsuchawaythatthecentreofmassofthewheelchairdescribesaspecifiedtrajectory,andtheinclinationisalsoundercontrol,allthisinordertoguaranteethecomfortofthepassenger.Thenarelativelycomplexsensorialsystemisneededtooperatethewheelchair,whichisdetailednext: ? 8 ultrasound sensors (2 per wheel). They are needed to measure the distances of the wheels to the steps. ? 1inclinometerwhichmeasurestheverticalityofthechairanddetectstheinstantatwhichtheclimbingmechanismcontactsthefloorwhendeploying. ? Encodersforthetwojointsofthechairstructure(2),therearwheels(2),andtheracksoftheclimbingmechanism(2). ? 2switchesthatindicatetheinstantatwhichthewheelhasoverpassedthestepbeingclimbed(aspringretractsthewheelwhenitloosescontactwiththestepduringitsraisingprocess,thissuddenmotionbeingdetected). 4KinematicsModelofControl Themostcriticalpartofthewholecontrolsystemisthesubsystemthatgeneratestherealtimetrajectoriesfortheactuatorsofthewheelchair,insuchwaythatthisvehicleshouldbeabletoclimbanddescendstaircaseskeepingthemaximumpossiblecomfortforthepassenger:smoothmotionsandverylittleinclinationsfromthevertical. Theserealtimetrajectoriesarethereferencesfortheclosed-loopsystems(servocontrols)thatcontroltheanglesofthemotors(actuators)inchargeofmovingtheseveraldegreesoffreedomofourwheelchair.Thistrajectorygeneratorreliesonakinematicmodelthatshouldbe:(a)preciseenoughtodescribethebehaviourofthemechanism,(b)simpleenoughtobeabletobecomputedinrealtime,(c)flexibleenoughtoincludedescriptionsofallthetasksmentionedintheprevioussection,whichincludedifferentchairconfigurationsanddifferentsituationsofcontactwiththeenvironment(floorandstaircases). Figure7showsanschemeofthemechanismofthewheelchair,wherethemostimportantvariablesanddegreesoffreedomaredefined.Agenericfloorprofilef(s)isassumed,thatcanbeeasilyparticularizedtothecasesofflatfloorsorstaircases.Inwhatfollowswewillrepresentpointsintheplanebyusingcomplexnotation:horizontalvariableistherealcomponentandverticalvariableistheimaginarycomponent.Thisnotationgreatlyfacilitatesobtainingkinematicmodelsofourwheelchairbecausewehavefoundthatexpressionofrotationsissimplifiedleadingtomorecompactequations. 5InverseKinematicModel Inversekinematicmodelgivesdevalues(angles)oftheactuatorvariableswhichareneededtoachieveadesiredcentreofmassandinclinationofthewheelchair.Whenthewheelchairclimbthestair,itcanpresentinfourpossibleconfigurations.Nextweshowallthepossibleconfigurationsandweshowtheanalyticalexpressionsoftheinversekinematicmodel. 5.1 FloorFlatwithStepsInverseKinematicModel Weknowthecenterofmass(Pg)andtheinclinationofthewheelchair()andtheheighthbetweenthecentreofthewheelsandweobtainthetwojoints1and2andthepositionofthefrontwheels3.ThisconfigurationisshowinFig.8.Theequationsarepresentednext: l4 A3=Pgx X4 l1cos + cos 22 1 l4 2 l22 cos + (1) 2 22 1 3=A3 l32 B23 (2) R B3=Pgy Y4 l1sin + l4 sin 22 1 l4 2 l22 sin + (3) 2 22 1 = + ang B 3 (4) A3 R3 A=Pgx X4 R3 l1cos + l4 cos( +) 22 1 l2 l4 2 2 cos + (5) 2 22 |2 h2 = A l32 B 2 (6) B=Pgy Y4 h l1sin + l4 sin( +) 22 1 l4 2 l22 sin + (7) 2 22 2 = ang B (8)A |2 h2 5.2 WheelchairStartstoRaisingtheStepswithRearRackandFrontWheelisontheFlatInverseKinematicModel Weknowthetwojoints1and2,thecontactpointPCbetweentherearrackandtheflat,andtheinstantaneouslengthoftherearstem(z),andweobtainthecenterofmass(Pg),andtheinclinationofthewheelchair().ThisconfigurationisshowinFig.9.Theequationsarepresentednext: Fig.9.Wheelchairstarttoraisingthestepswithrearrackandfrontwheelinontheflat 1 l4 2 j( P=Pr+jPi=Pg PC+l7 jl6 l22 e2 +) 22 ej( )(9) Pi 2 = + arcsin (10) l3 l4 1 l4 2 A4=Pgx X4 l1cos2 + 2 cos 2 l22 2 cos + (11) 2 z=Pr l3cos( 2 )(12) B4=Pgy Y4 l1sin + 2 l4 1 l4 2 sin l22 sin + (13) 22 22 1 4=A4 l32 B24 (14) R 1 = + ang B 4 (15) A4 R4 5.3 WheelchairStartstoRaisingtheStepswithFrontRackandRearWheelisontheFlatInverseKinematicModel Weknowthecenterofmass(Pg)andtheinclinationofthewheelchair(),theheighthbetweenthecentreofthewheels,andthecontactpointPCbetweenthefrontrackandtheflat,andweobtainthetwojoints1and2,thepositionofthefrontwheels3andtheinstantaneouslengthofthefrontstem(z).ThisconfigurationisshowinFig.10.Theequationsarepresentednext: j( l4 P=Pr+jPi=Pg PC l1e2 +) ej 2 1 l4 2 j( j( ) l2 e2 +) e(16) 2 2 2 z=Pr l3cos(1+ )(17) A=Pgx PCx zcos(+) l1cos + + l4 cos( +) 22 1 l2 l4 2 2 cos + (18) 2 22 Pi 1 = + + arcsin (19) l3 3 =1 PC + zej(+)+ X4 jY4 jh (20) R 2 = ang B 3 (21) A3 R3 5.4 WheelchairStartstoRaisingtheStepswithFrontandRearRackInverseKinematicModel Weknowthecenterofmass(Pg),theinclinationofthewheelchair(),andthecontactpointsPC1andPC2betweenthefrontandrearracksandtheflat,andweobtainthetwojoints1and2andtheinstantaneouslengthsofthefrontandrearstems(z1andz2).ThisconfigurationisshowinFig.11.Theequationsarepresentednext: j( l4 F=Fr+jFi=ej( )Pg PC1 l1e2 +) ej 2 2 1l4 + l2 e (22) 2 2 2 z1=Fr l3cos(1+ )(23) G=Gr+jGi=Pg PC2+l7 jl6+l5 1 l22 l4 2 ej( ej( )(24) 2+) 22 Fi 1 = + arcsin (25) l3 Gi 2 = + arcsin (26) l3 z2=Gr l3cos( 2 )(27) 6 Movement Conditions ThetrajectorydesiredforthepointPgisdesignedbylinkingtwoarcsofcircumferenceandonestraighttrajectory.Also,themovementmustbecom-fortableforthepassenger.Thisconstraintimpliesthatwecantexceedthemaximumaccelerationandthemaximumvelocitydefined,andthatvertical-ityoftheseatmustbemaintained.InFig.12,wecanseetheglobaltrajectory T1 2T1t Fig.13.Profilevelocityinthepartofthecircumferencetrajectory desiredbythewheelchair.AndinFig.13,wecanseetheprofileofvelocitydesired.WeassumethatthevelocityisV=atintheinterval(0,T1),whereaisthetangentialacceleration.Theresultsare: a x(t)=x0+Rsint2 (28) 2R a y(t)=y0+R Rcost2 (29) 2R a Vx(t)=atcost2 (30) 2R Vy(t)=atsin2aRt2 (31) a a2t2 a ax = a cos t2 sin t2 (32) 2RR 2R a a2t2 a ay = a sin t2 + cos t2 (33) 2RR 2R IfweassumethatthevelocityofPgint=T1isVmax,theconditionsoftangencialaccelerationa,curvatureradiusR,andtimeT1toachieveVmaxare: a = amax (34) 1+(2)2 V 2 R = max (35) 2 a 2R T1 = (36) a Intheanotherpartsofthetrajectory,themovementismadewithamax. 7 Simulation Results Thisisoneexampleoftheclimbingstairmovementofthewheelchair.Wesupposeonestairwitheightsteps.Thedimensionsofthestepsare150mm(height)250mm(width).Thetrajectorymustbecomfortableforthehand-icapped,thismeansthataccelerationsandvelocitiesmustbeshorterthanthemaximumaccelerationofcomfortandmaximumvelocityofcomfort,andtheinclinationofthewheelchairmustbenull(=0).Theseconditionsin-volvethatourmovementwillbecomposedoftwomovements(oneofthemtoacceleratethewheelchairandtheothertodeccelerateit).Theresultsofthesimulationare: Inthissimulation,wehaveobtainedoneimportantresult:60%offullthetimeneededtoclimbthestaircaseisadeadtime.Oneofthefutureworkwillbethedesignofnewtrajectoriesthatminimizetheexistenceofdeadtimes. 8 Conclusions Anewstaircaseclimbingwheelchairhasbeendesignedwhosemaincharac-teristicisbeingespeciallystable.Moreover,itsadditionaldegreesoffre
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。