




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2014-2015学年福建省泉州市洛江区九年级(上)期末数学试卷一、选择题(共7小题,每小题3分,满分21分)1下列计算正确的是( )ABC2+4=6D=22已知x=2是一元二次方程x22mx+4=0的一个解,则m的值为( )A2B0C0或2D0或23如果两个相似多边形的面积比为16:9,那么这两个相似多边形的相似比为( )A16:9B4:3C2:3D256:814对于二次函数y=(x1)2+2的图象,下列说法正确的是( )A开口向下B对称轴是x=1C顶点坐标是(1,2)D与x轴有两个交点5在下列事件中,是必然事件的是( )A随意写出一个自然数,是正数B两个正数相减,差是正数C一个整数与一个小数相乘,积是整数D两个正数相除,商是正数6如图,河坝横断面迎水坡AB的坡比是(坡比是坡面的铅直高度BC与水平宽度AC之比),坝高BC=3m,则坡面AB的长度是( )A9mB6mCmDm7如图,ABC中,D,E分别是边AB,AC的中点若DE=2,则BC=( )A2B3C4D5二、填空题(共10小题,每小题4分,满分40分)8计算(+)()的结果为_9如果关于x的方程x26x+m=0有两个相等的实数根,那么m=_10使式子有意义的x取值范围是_11某商品经过连续两次降价,销售单价由原来的125元降到80元,设平均每次降价的百分率为x,则可列方程:_12已知A(3,y1)、B(4,y2)都在抛物线y=x2+1上,试比较y1与y2的大小:_13把方程x210x11=0化为(x+m)2=n的形式,结果为_14如图,BAC位于66的方格纸中,则tanBAC=_15如图,小红随意在地板上踢毽子,则毽子恰好落在黑色方砖上的概率为_16如图,已知1=2,若再增加一个条件就能使结论“ABDE=ADBC”成立,则这个条件可以是_(只填一个即可)17如图,已知DEBC,则=_;如果BC=12,则DE=_三、解答题(共9小题,满分89分)18计算:2sin4519解方程:x24x+2=020已知:线段a、b、c,且=(1)求的值(2)如线段a、b、c满足a+b+c=27求a、b、c的值21如图,从A地到B地的公路需经过C地,图中AC=10千米,CAB=25,CBA=37,因城市规划的需要,将在A、B两地之间修建一条笔直的公路(1)求改直的公路AB的长(精确到0.1);(2)问公路改直后比原来缩短了多少千米(精确到0.1)?22如图,ABC在坐标平面内三顶点的坐标分别为A(1,2)、B(3,3)、C(3,1)根据题意,请你在图中画出ABC;以B为位似中心,画出与ABC相似且相似比是3:1的BAC,并分别写出顶点A和C的坐标23一只不透明的箱子里共有3个球,把它们的分别编号为1,2,3,这些球除编号不同外其余都相同(1)从箱子中随机摸出一个球,求摸出的球是编号为1的球的概率;(2)从箱子中随机摸出一个球,记录下编号后将它放回箱子,搅匀后再摸出一个球并记录下编号,求两次摸出的球都是编号为3的球的概率24用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米(1)求y关于x的函数关系式;(2)当x为何值时,围成的养鸡场面积为60平方米?(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由25如图,矩形ABCD中,AB=10,BC=5,点P为AB边上一点,DP交AC于点Q(1)求证:APQCDQ;(2)当PDAC时,求线段PA的长度26(13分)如图1,抛物线y=kx2+2经过(4,0),A(a,b)是抛物线上的任意一点,直线l经过(0,4)且与x轴平行,过A作Al于B点(1)直接写出k的值:k=_;(2)当a=0时,AO=_,AB=_;当a=8时,AO=_,AB=_;(3)由(2)的结论,请你猜想:对于抛物线上的任意一点A,AO与AB有怎样的大小关系,并证明你的猜想;(4)如图2,已知线段CD=12,线段的两端点C、D在抛物线上滑动,求C、D两点到直线l的距离之和的最小值2014-2015学年福建省泉州市洛江区九年级(上)期末数学试卷一、选择题(共7小题,每小题3分,满分21分)1下列计算正确的是( )ABC2+4=6D=2【考点】二次根式的混合运算 【专题】计算题【分析】根据二次根式的除法法则对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的加减法对C进行判断;根据二次根式的性质对D进行判断【解答】解:A、原式=3,所以A选项正确;B、原式=2,所以B选项错误;C、2与4不是同类二次根式,不能合并,所以C选项错误;D、原式=2,所以D选项错误故选A【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式2已知x=2是一元二次方程x22mx+4=0的一个解,则m的值为( )A2B0C0或2D0或2【考点】一元二次方程的解 【分析】直接把x=2代入已知方程就得到关于m的方程,再解此方程即可【解答】解:x=2是一元二次方程x22mx+4=0的一个解,44m+4=0,m=2故选:A【点评】本题考查的是一元二次方程的根即方程的解的定义把求未知系数的问题转化为方程求解的问题3如果两个相似多边形的面积比为16:9,那么这两个相似多边形的相似比为( )A16:9B4:3C2:3D256:81【考点】相似多边形的性质 【分析】根据两个相似多边形的面积比为16:9,面积之比等于相似比的平方【解答】解:根据题意得:=故选:B【点评】本题考查了相似多边形的性质相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方4对于二次函数y=(x1)2+2的图象,下列说法正确的是( )A开口向下B对称轴是x=1C顶点坐标是(1,2)D与x轴有两个交点【考点】二次函数的性质 【专题】常规题型【分析】根据抛物线的性质由a=1得到图象开口向上,根据顶点式得到顶点坐标为(1,2),对称轴为直线x=1,从而可判断抛物线与x轴没有公共点【解答】解:二次函数y=(x1)2+2的图象开口向上,顶点坐标为(1,2),对称轴为直线x=1,抛物线与x轴没有公共点故选:C【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a0)的顶点式为y=a(x)2+,的顶点坐标是(,),对称轴直线x=b2a,当a0时,抛物线y=ax2+bx+c(a0)的开口向上,当a0时,抛物线y=ax2+bx+c(a0)的开口向下5在下列事件中,是必然事件的是( )A随意写出一个自然数,是正数B两个正数相减,差是正数C一个整数与一个小数相乘,积是整数D两个正数相除,商是正数【考点】随机事件 【分析】根据必然事件的概念(必然事件指在一定条件下一定发生的事件)可判断正确答案【解答】解:A、随意写出一个自然数,是正数,是随机事件;B、两个正数相减,差是正数,是随机事件;C、一个整数与一个小数相乘,积是整数,是随机事件;D、两个正数相除,商是正数,是必然事件故选:D【点评】此题主要考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件6如图,河坝横断面迎水坡AB的坡比是(坡比是坡面的铅直高度BC与水平宽度AC之比),坝高BC=3m,则坡面AB的长度是( )A9mB6mCmDm【考点】解直角三角形的应用-坡度坡角问题 【专题】计算题【分析】在RtABC中,已知坡面AB的坡比以及铅直高度BC的值,通过解直角三角形即可求出斜面AB的长【解答】解:在RtABC中,BC=3米,tanA=1:;AC=BCtanA=3米,AB=6米故选:B【点评】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力,熟练运用勾股定理是解答本题的关键7如图,ABC中,D,E分别是边AB,AC的中点若DE=2,则BC=( )A2B3C4D5【考点】三角形中位线定理 【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得BC=2DE【解答】解:D,E分别是边AB,AC的中点,DE是ABC的中位线,BC=2DE=22=4故选:C【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键二、填空题(共10小题,每小题4分,满分40分)8计算(+)()的结果为1【考点】二次根式的混合运算 【分析】根据平方差公式:(a+b)(ab)=a2b2,求出算式(+)()的结果为多少即可【解答】解:(+)()=23=1(+)()的结果为1故答案为:1【点评】(1)此题主要考查了二次根式的混合运算,要熟练掌握,解答此题的关键是要明确:与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的在运算中每个根式可以看做是一个“单项式”,多个不同类的二次根式的和可以看“多项式”(2)此题还考查了平方差公式的应用:(a+b)(ab)=a2b2,要熟练掌握9如果关于x的方程x26x+m=0有两个相等的实数根,那么m=9【考点】根的判别式 【分析】因为一元二次方程有两个相等的实数根,所以=b24ac=0,根据判别式列出方程求解即可【解答】解:关于x的方程x26x+m=0有两个相等的实数根,=b24ac=0,即(6)241m=0,解得m=9故答案为:9【点评】总结:一元二次方程根的情况与判别式的关系:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数根;(3)0方程没有实数根10使式子有意义的x取值范围是x1【考点】二次根式有意义的条件 【专题】计算题【分析】本题主要考查自变量的取值范围,函数关系中主要有二次根式根据二次根式的意义,被开方数是非负数【解答】解:根据题意得:x+10,解得x1故答案为:x1【点评】本题考查二次根式有意义的条件,比较简单,注意掌握二次根式的意义,被开方数是非负数11某商品经过连续两次降价,销售单价由原来的125元降到80元,设平均每次降价的百分率为x,则可列方程:125(1x)2=80【考点】由实际问题抽象出一元二次方程 【专题】销售问题【分析】等量关系为:原价(1下降率)2=80,把相关数值代入即可【解答】解:第一次降价后的价格为125(1x),第二次降价后的价格为125(1x)(1x)=55(1x)2,列的方程为125(1x)2=80,故答案为125(1x)2=80【点评】本题考查求平均变化率的方法若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1x)2=b12已知A(3,y1)、B(4,y2)都在抛物线y=x2+1上,试比较y1与y2的大小:y1y2【考点】二次函数图象上点的坐标特征 【分析】先求得函数y=x2+1的对称轴为x=0,再判断A(3,y1)、B(4,y2)在对称轴右侧,从而判断出y1与y2的大小关系【解答】解:函数y=x2+1的对称轴为x=0,A(3,y1)、B(4,y2)对称轴右侧,抛物线开口向上,在对称轴右侧y随x的增大而增大34,y1y2故答案为:y1y2【点评】此题主要考查了二次函数图象上点的特征,利用已知解析式得出对称轴进而利用二次函数增减性得出是解题关键13把方程x210x11=0化为(x+m)2=n的形式,结果为(x5)2=36【考点】解一元二次方程-配方法 【分析】把常数项11移项后,再在等式的两边同时加上一次项系数10的一半的平方【解答】解:由原方程移项,得x210x=11,等式的两边同时加上一次项系数10的一半的平方,得x210x+52=11+52,配方程,得(x5)2=36;故答案是:(x5)2=36【点评】本题考查了解一元二次方程配方法配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方14如图,BAC位于66的方格纸中,则tanBAC=【考点】锐角三角函数的定义 【分析】根据三角函数的定义解答【解答】解:观察图形可知,tanBAC=【点评】本题考查锐角三角函数的概念:在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边15如图,小红随意在地板上踢毽子,则毽子恰好落在黑色方砖上的概率为【考点】几何概率 【专题】常规题型【分析】先求出黑色方砖在整个地板面积中所占面积的比值,根据此比值即可解答【解答】解:黑色方砖的面积为5,所有方砖的面积为20,键子恰落在黑色方砖上的概率为P(A)=故答案为:【点评】此题考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比,关键是求出黑色方砖在整个地板面积中所占面积的比值16如图,已知1=2,若再增加一个条件就能使结论“ABDE=ADBC”成立,则这个条件可以是B=D(只填一个即可)【考点】相似三角形的判定与性质 【专题】压轴题;开放型【分析】要使ABDE=ADBC成立,需证ABCADE,在这两三角形中,由1=2可知BAC=DAE,还需的条件可以是B=D或C=AED【解答】解:这个条件为:B=D1=2,BAC=DAEB=D,ABCADEABDE=ADBC【点评】本题考查了相似三角形的判定与性质的运用17如图,已知DEBC,则=;如果BC=12,则DE=4【考点】相似三角形的判定与性质 【专题】压轴题【分析】由DECB,可证得ADEABC,根据相似三角形的对应边成比例,可求得AE、AC的比例关系,进而可根据BC的长和两个三角形的相似比求出DE的值【解答】解:DEBCADEABC=,BC=12=,DE=4【点评】本题主要考查了相似三角形的性质:相似三角形的对应边成比例三、解答题(共9小题,满分89分)18计算:2sin45【考点】实数的运算;特殊角的三角函数值 【专题】计算题【分析】第一项根据二次根式和立方根的意义得出结果,第二项根据二次根式的乘法法则得出结果,第三项利用特殊值的三角函数得出结果,最后合并同类二次根式即可得到最后结果【解答】解:原式=632=18=16【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算19解方程:x24x+2=0【考点】解一元二次方程-配方法 【分析】本题要求用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式【解答】解:x24x=2x24x+4=2(x2)2=2或,【点评】配方法的步骤:形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可20已知:线段a、b、c,且=(1)求的值(2)如线段a、b、c满足a+b+c=27求a、b、c的值【考点】比例的性质 【分析】(1)根据比例的性质得出=,即可得出的值;(2)首先设=k,则a=2k,b=3k,c=4k,利用a+b+c=27求出k的值即可得出答案【解答】解:(1)=,=,=,(2)设=k,则a=2k,b=3k,c=4k,a+b+c=27,2k+3k+4k=27,k=3,a=6,b=9,c=12【点评】此题主要考查了比例的性质,根据已知得出a=2k,b=3k,c=4k进而得出k的值是解题关键21如图,从A地到B地的公路需经过C地,图中AC=10千米,CAB=25,CBA=37,因城市规划的需要,将在A、B两地之间修建一条笔直的公路(1)求改直的公路AB的长(精确到0.1);(2)问公路改直后比原来缩短了多少千米(精确到0.1)?【考点】解直角三角形的应用 【分析】(1)作CHAB于H在RtACH中根据CH=ACsinCAB求出CH的长,由AH=ACcosCAB求出AH的长,同理可得出BH的长,根据AB=AH+BH可得出结论;(2)根据在RtBCH中,BC=CHsinCBA可得出BC的长,由AC+BCAB即可得出结论【解答】解:(1)作CHAB于HAC=10千米,CAB=25,在RtACH中,CH=ACsinCAB=10sin254.23(千米),AH=ACcosCAB=10cos259.06(千米)CBA=37,在RtBCH中,BH=CHtanCBA=4.23tan375.61(千米),AB=AH+BH=9.06+5.61=14.6714.7(千米)改直的公路AB的长14.7千米;(2)在RtBCH中,BC=CHsinCBA=4.23sin377.03(千米),则AC+BCAB=10+7.0314.72.3(千米) 答:公路改直后比原来缩短了2.3千米【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键22如图,ABC在坐标平面内三顶点的坐标分别为A(1,2)、B(3,3)、C(3,1)根据题意,请你在图中画出ABC;以B为位似中心,画出与ABC相似且相似比是3:1的BAC,并分别写出顶点A和C的坐标【考点】作图-位似变换 【分析】根据坐标确定各点的位置,顺次连接即可画出ABC;因为位似中心为B,相似比为3:1,可以延长CB到C,AB到A,使BC=3BC,AB=3AB,连接AC即可【解答】解:A(9,6),C(3,9)或A(3,0),C(3,3)【点评】此题要会根据点的坐标确定位置,然后理解位似中心的定义,作出相似三角形23一只不透明的箱子里共有3个球,把它们的分别编号为1,2,3,这些球除编号不同外其余都相同(1)从箱子中随机摸出一个球,求摸出的球是编号为1的球的概率;(2)从箱子中随机摸出一个球,记录下编号后将它放回箱子,搅匀后再摸出一个球并记录下编号,求两次摸出的球都是编号为3的球的概率【考点】列表法与树状图法;概率公式 【分析】(1)直接利用概率公式求解即可;(2)首先列出树状图,然后利用概率公式求解即可【解答】解:(1)从箱子中随机摸出一个球,摸出的球是编号为1的球的概率为:;(2)画树状图如下:共有9种等可能的结果,两次摸出的球都是编号为3的球的概率为【点评】本题考查了列表法与树状图法及概率公式,难点在于正确的列出树形图,难度中等24用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米(1)求y关于x的函数关系式;(2)当x为何值时,围成的养鸡场面积为60平方米?(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由【考点】一元二次方程的应用;根据实际问题列二次函数关系式 【专题】几何图形问题【分析】(1)根据矩形的面积公式进行列式;(2)、(3)把y的值代入(1)中的函数关系,求得相应的x值即可【解答】解:(1)设围成的矩形一边长为x米,则矩形的邻边长为:322x依题意得y=x(322x)=x2+16x答:y关于x的函数关系式是y=x2+16x;(2)由(1)知,y=x2+16x当y=60时,x2+16x=60,即(x6)(x10)=0解得 x1=6,x2=10,即当x是6或10时,围成的养鸡场面积为60平方米;(3)不能围成面积为70平方米的养鸡场理由如下:由(1)知,y=x2+16x当y=70时,x2+16x=70,即x216x+70=0因为=(16)24170=240,所以 该方程无解即:不能围成面积为70平方米的养鸡场【点评】本题考查了一元二次方程的应用解题的关键是熟悉矩形的周长与面积的求法,以及一元二次方程的根的判别式25如图,矩形ABCD中,AB=10,BC=5,点P为AB边上一点,DP交AC于点Q(1)求证:APQCDQ;(2)当PDAC时,求线段PA的长度【考点】相似三角形的判定与性质;矩形的性质 【分析】(1)根据矩形的性质,可得出ABCD,从而得出PAQ=DCQ,QPA=QDC,利用两角对应相等的三角形相似得出结论;(2)由PDAC,得ACD+PDC=90,从而得出ACD=PDA,可证明ADCPAD,由相似比得出PA的长【解答】(1)证明:四边形ABCD是矩形,ABCD,PAQ=DCQ,QPA=QDC,APQCDQ(2)解:PDAC,ACD+PDC=90,PDA+PDC=90,ACD=PDA,ADC+PAD=90,ADCPAD,=,=,PA=2.5【点评】本题考查了相似三角形的判定和性质以及矩形的性质,综合性强,难度不大26(13分)如图1,抛物线y=kx2+2经过(4,0),A(a,b)是抛物线上的任意一点,直线l经过(0,4)且与x轴平行,过A作Al于B点(1)直接写出k的值:k=;(2)当a=0时,AO=2,AB=2;当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 洗车保养转让协议合同书
- 第一个合作协议合同范本
- 网络监控安装合同协议书
- 私人建房承包安全协议书
- 矿山开采合作合同协议书
- 粗粮加工代理合同协议书
- 艺术培训班教师合同范本
- 洗涤厂员工劳务合同范本
- 渣土车承包维修合同范本
- 项目合同协议书样品模板
- GB/T 10413-2002窄V带轮(有效宽度制)
- 公务员保密教育培训课件
- DB65∕T 2798-2007 输水工程单元工程质量检验评定标准
- 模板7年级期末考试质量分析.ppt课件
- (完整版)GB2893-2008-安全色
- 口腔牙体牙髓病
- FMS功能性动作筛查PPT课件
- 个人在职证明模板.docx
- 三年级数学《重量单位的换算口算题(共60道)》专题训练
- 探究影响空气阻力的因素
- hs编码对照表.xls
评论
0/150
提交评论