排列、组合习题精选精讲.doc_第1页
排列、组合习题精选精讲.doc_第2页
排列、组合习题精选精讲.doc_第3页
排列、组合习题精选精讲.doc_第4页
排列、组合习题精选精讲.doc_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数学家教 81812928“解排列、组合应用问题”的思维方法考点1 考查两个原理直接应用例1 (03年天津)某城市的中心广场建造一个花圃,分为6个部分(如图)。现要种植4种不同色的花,每部分种一种且相邻部分不能种同样色的花,不同的种植方法有 多少种?2 解析:求解排列组合问题材时,一是观察取出的元素是否有顺序,从面确定是排列问题还是组合问题材;二是仔细审题,弄清怎样去完成这一件事,从而确定是分类计数还是分步计数原理。解:按区域种植,选择相邻区域较多的先种,可分六步完成:第一步从4种花中任先1种给1号区域种花,有4种方法;第二步从余下的3种花中任先一种给2号区域种,有3种方法;第三步从余下的2种花中任先1种种给3号区域种有2种方法;第四步给4号区域种花,由于4号区域与2号区域不相邻,故这两个区域可分为同色与不同色两类:若4号区域2号区域种同色花,则4号区域有1种种法,第五步给5号区域有2种种法;第六步给6号区域有1种种法;若4号区域与2号区域种不同色花,则4号区域有1种种法,面5号区域的种法又可分为两类:若5号区域与2号区域种同色花,则5号区域有1种种法,6号区域有2种种法;若5号区域与2号区域种不同色花,则5号区域有1种种法,6号区域有1种种法。由分步计数原理得不同的种植方法共有=120(种)考点2 考查特殊元素优先考虑问题例2 (04天津)从1,2,3,5,7,中任取2个数字,从0,2,4,6,8中任取2个数字,组成没有重担数字的四位数,其中通报被5整除的四位数共有 个。用数字作答)解析:对于含有特殊元素的排列组合问题,一般应优先安排特殊位置上的特殊元素,再安排其他位置上的其他元素。解:合条件四位数的个位必须是0、5,但0不能排在首位,故0是其中的特殊元素,应优先安排,按照0排在首位,0排在十位、百位和不含0为标准分为三类: 0排在个位能被0整除的四位数有个 0排在十位、百位,但5必须排在个位有 =48个 不含0,但5必须排在个位有个 由分类计数原理得所求四位数共有300个。考点3 考查相邻排列计算问题例2(海春)有件不同的产品排成一排,若其中A、B两件不同的产品排在一起的排法有48种,则 解析:对于含有某几个元素相邻的排列问题可先将相邻元素“捆绑”起来视为一个大元素,与其他元素一起进行了全排列,然后瑞对相邻元素内部进行全排列,这就是处理相邻排列问题的“捆绑”方法。解: 将A、B两件产品看作一个大元素,与其他产品排列有种排法;对于上述的每种排法,A、B两件产品之间又有种排法,由分步计数原理得满足条件的不同排法有 =48种,故考点4 考查互不相邻排列计算问题 例4 (04辽)有两排座位,前排11个座位,后排12个座位,现安排2个就座,规定前排中间的3 个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是( )(A) 234 (B) 346 (C)350 (D) 363解析:对于前排中某个元素互不不相邻的排列问题,可先将其它元素排成一排,然后将不相邻的元素插入这些排好的元素之间及两端的空隙中,这就是解决互不相邻问题最为奏效的插空法。解:先将前排中间的5号、6号、7号座位和待安排2人的取出,再将剩下的18座位排成一列,然后妆待安排2人的座位插入这18座位之间及两端的空隙中,使这2人的座位互不相邻,有种方法;但在前排的4号与8号座位、前排的11号与后排的1号座位之间可以同时插入待安排2人的座位满足条件,有种方法。由分类计数原理得到不同排法的种数有(种),选(B)。考点5 考查排列组合混合计算问题例5 (04陕)将4名教师分配到3种中学任教,每所中学到少1名教师,则不同的分配方案共有( )种(A)12 (B) 24 (C)36 (D)48解析:对于排列组合混合问题,可运用先分组(堆)后排列的策略求解,无次序分组问题常有“均匀分组、部分均匀分组、非均匀分组”等三种类型。计数时常有下面结论:对于其中的“均匀分组”和“部分均匀分组”问题,只需按“非均匀分组”列式后,再除以均匀组数的全排列数。解:可分两步完成:第一步将4名教师部分均匀分为三组(1、1、2)有种方法;第二步将这三组教师分配到3所中学任教有种方法。由分步计数原理得不同的分配方案共有=36种。应选(B)。考点6 考查定序排列计算问题例6 (96全国)由数字0、1、2、3、4、5、组成没有重复数字的六位数,其中个位数字小于十位数字的共有( )个(A) 210 ()300 (C)464 (D)600解析:对于部分元素定序排列问题,可先把定序元素与其它元素一同进行全排列,然后根据定序排列在整体排列中出现的概率,即用定序排列数去均分总排列数获解。解:若不考虑附加条件,组成的六位数有个。在这些六位数中,只有个位数字小于和个位数字大于十位数字这两种情况,而这两种情况在整体排列中出现的概率均为,故所求六位数为=300个,应选(B)。考点7 考查等价转化计算问题例7 (04湖南)从正方体的八个顶点中任取三个点为顶点作三角形,其中直角三角形的个数为()个()56 (B)52 (C)48 (D)40解析:几何图形问题是高考的常考点。求解时,一要熟悉几何图形性质及点、线、面位置关系;二要按同一标准分类,避免重复、遗漏;三若直接求解困难或头绪繁多时,可从其反而去考虑,将其转化为简单的问题去解决。解:从正方体的8个顶点中任取3个顶点可构成个三角形,其中非直角三角形的有两类:上底面的每个顶点所在的侧面对角线与下底面相应的对角线构成1个正三角形,上底面的4个顶点共4个非直角三角形;下底面的4个顶点所在的侧面对角线与上底面相应的结角线共构成4个非直角三角形。故所求直角三角形共有个,选(C)。例8 (97全国)四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不同的取法共有( )种(A) 150()147 (C)144 (D)141解:从10个点中任取4个噗有=210种取法,应剔除下面三类共面点:(1) 从四面体的每个面上的6个点中任取4个点必共面有=60种取法;(2) 四面体的每条棱上3个点与对棱中点共面有6种取法;(3) 6个中点连线有3对平行线段共面,故从这6个点中取4个共面中取4个共面点有3种取法。故符合条件取法共210-60-6-3=141种。选(D).考点8 考查二项展开式指定项求法 例9 (04湖北) 已知的展开式中各项系数的和是128,则展开式中的系数是 .解析:求二项展开式的指定项或其系数,常运用其通项公式,将其转化为方程问题去求解.解:取得 令 得 .故展开式中的系数为.考点9 考查二项展开式系数和求法例10 (04天津)若 ,则 .解析:直接展开由各项系数求解将误入歧途。二项式定理既是公式,又可视为方程式或恒等式,故可用多项式恒等理论和赋值法去求解。解:取得 ;故原式=考点10 考查三项展开式指定项求法例11 (92全)在的展开式中x的系数为( ) (A)160 (B)240 (C)360 D800解析:求三顶展开式指定顶时,常通过恒等变形,将其转化为熟悉的两项式,然后分两步运用二项式定理展开求解。解:= 展开式中x项的系数只能是在中,再次展开可得x项为故x项的系数为240,应选B。此题亦可将其恒等变形为 ,再把它们分别展开,运用多顶式乘法集项法求解。考点11 考查二项式定理与近似估值问题例12 (04湖南)农民收入由工资性收入和其它收入两部分构成。03年某地区农民人均收入为3150元(其中工资源共享性收入为1800元,其它收入为1350元),预计该地区自04年起的5年内,农民的工资源共享性收入将以每年的年增长率增长,其它性收入每年增加160元。根据以上数据,08年该地区人均收入介于( )(A)4200元4400元 (B)4400元4460元(C)4460元4800元 (D)4800元5000元解析:在处理与二项式高次幂有关的近似估值问题时,可运用二项式定理将其展开,经简略计算去解决估值问题。解:08年农民工次性人均收入为又08年农民其它人均收入为1350+160=2150故08年农民人均总收入约为2405+2150=4555(元)。故选B考点12 考查二项式定理应用例13 (91三南)已知函数证明:对于任意不小于3的自然数n,解析:若直接运用二项式定理或数学归纳法去证明困难都大,故应另辟解题蹊径,将其转化为熟悉命题:再证明就容易了。证明: , 展开至少有4项,故原命题获证。 历年高考排列组合和二项式定理的试题以客观题的形式出现,多为课本例题、习题迁移的改编题,难度不大,重点考查运用排列组合知识、二项式定理去解决问题的能力和逻辑划分、化归转化等思想方法。为此,只要我们熟悉两个原理,把握住二项式定理及其系数性质,会把实际问题化归为数学模型问题或方程问题去解决,就可顺利获解。解决排列组合问题常见策略常用方法:一. 合理选择主元例1. 公共汽车上有3个座位,现在上来5名乘客,每人坐1个座位,有几种不同的坐法?例2. 公共汽车上有5个座位,现在上来3名乘客,每人坐1个座位,有几种不同的坐法?分析:例1中将5名乘客看作5个元素,3个空位看作3个位置,则问题变为从5个不同的元素中任选3个元素放在3个位置上,共有种不同坐法。例2中再把乘客看作元素问题就变得比较复杂,将5个空位看作元素,而将乘客看作位置,则例2变成了例1,所以在解决排列组合问题时,合理选择主元,就是选择合适解题方法的突破口。二. “至少”型组合问题用隔板法对于“至少”型组合问题,先转化为“至少一个”型组合问题,再用n个隔板插在元素的空隙(不包括首尾)中,将元素分成n1份。例5. 4名学生分6本相同的书,每人至少1本,有多少种不同分法?解:将6本书分成4份,先把书排成一排,插入3个隔板,6本书中间有5个空隙,则分法有:(种)三. 注意合理分类元素(或位置)的“地位”不相同时,不可直接用排列组合数公式,则要根据元素(或位置)的特殊性进行合理分类,求出各类排列组合数。再用分类计数原理求出总数。例6. 求用0,1,2,3,4,5六个数字组成的比2015大的无重复数字的四位数的个数。解:比2015大的四位数可分成以下三类:第一类:3,4,5,共有:(个);第二类:21,23,24,25,共有:(个);第三类:203,204,205,共有:(个)比2015大的四位数共有237个。四. 特殊元素(位置)用优先法把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。例1. 6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法?分析:解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。解法1:(元素分析法)因为甲不能站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有种站法;第二步再让其余的5人站在其他5个位置上,有种站法,故站法共有:480(种)解法2:(位置分析法)因为左右两端不站甲,故第一步先从甲以外的5个人中任选两人站在左右两端,有种;第二步再让剩余的4个人(含甲)站在中间4个位置,有种,故站法共有:(种)五. 分排问题用直排法对于把几个元素分成若干排的排列问题,若没有其他特殊要求,可采取统一成一排的方法求解。例5. 9个人坐成三排,第一排2人,第二排3人,第三排4人,则不同的坐法共有多少种?解:9个人可以在三排中随意就坐,无其他限制条件,所以三排可以看作一排来处理,不同的坐标共有种。六. 复杂问题用排除法对于某些比较复杂的或抽象的排列问题,可以采用转化思想,从问题的反面去考虑,先求出无限制条件的方法种数,然后去掉不符合条件的方法种数。在应用此法时要注意做到不重不漏。例6. 四面体的顶点和各棱中点共有10个点,取其中4个不共面的点,则不同的取法共有( )A. 150种 B. 147种 C. 144种 D. 141种解:从10个点中任取4个点有种取法,其中4点共面的情况有三类。第一类,取出的4个点位于四面体的同一个面内,有种;第二类,取任一条棱上的3个点及该棱对棱的中点,这4点共面,有6种;第三类,由中位线构成的平行四边形(其两组对边分别平行于四面体相对的两条棱),它的4个点共面,有3种。以上三类情况不合要求应减掉,所以不同的取法共有:(种)。七. 多元问题用分类法按题目条件,把符合条件的排列、组合问题分成互不重复的若干类,分别计算,最后计算总数。例7. 已知直线中的a,b,c是取自集合3,2,1,0,1,2,3中的3个不同的元素,并且该直线的倾斜角为锐角,求符合这些条件的直线的条数。解:设倾斜角为,由为锐角,得,即a,b异号。(1)若c0,a,b各有3种取法,排除2个重复(,),故有:3327(条)。(2)若,a有3种取法,b有3种取法,而同时c还有4种取法,且其中任意两条直线均不相同,故这样的直线有:33436(条)。从而符合要求的直线共有:73643(条)八. 排列、组合综合问题用先选后排的策略处理排列、组合综合性问题一般是先选元素,后排列。例8. 将4名教师分派到3所中学任教,每所中学至少1名教师,则不同的分派方案共有多少种?解:可分两步进行:第一步先将4名教师分为三组(1,1,2),(2,1,1),(1,2,1),共有:(种),第二步将这三组教师分派到3种中学任教有种方法。由分步计数原理得不同的分派方案共有:(种)。因此共有36种方案。九顺序问题用“除法”对于几个元素顺序一定的排列问题,可先把这几个元素同其余元素一同进行排列,然后用总的排列数除以这几个元素的全排列数。例:7个节目,甲、乙、丙三个节目按给定顺序出现,有多少种排法?分析:7个节目的全排列为A77,甲、乙、丙之间的顺序已定。所以有A77A33=840种。答案:840种。十特征分析研究有约束条件的排数问题,需紧扣题中所提供的数字特征,结构特征,进行推理,分析求解。例:由1,2,3,4,5,6这六个数可组成多少个无重复且是6的倍数的五位数?分析:6的倍数既是2的倍数,又是3的倍数。是2的倍数,个位上为2、4或6;是3 的倍数必须满足各个数字上的数字之和是3的倍数的特征。把这6个数分组(3)、(6)、(1,5)、(2,4),每组的数字和都是3的倍数,因此可分成两类讨论。第一类:由1、2、4、5、6作数码,首先从2、4、6中任选一个作为个位数字,有A31种,然后其余4个数字在其它数字上全排列有A44,所以,N1=A31A44个,第二类:由1、2、3、4、5作数码,依上法有N2=A21A44个。故N=N1+N2=120个。答案:120个。十一、对应有些时候,一个事件与一个结果之间存在一一对应的关系。例:在100名选手之间进行单循环淘汰赛(即一场比赛后,失败者退出比赛),最后产生一名冠军,需举行多少场比赛?分析:要产生一名冠军,需要淘汰99名选手。要淘汰掉一名选手,必须举行一场比赛;反之,每场比赛恰淘汰一名选手。两者之间一一对应。故要淘汰99名选手,应举行99场比赛,从而产生一名冠军。十二、用比例法有些排列应用题,可以根据每个元素出现机会占整个问题的比例,从而求得问题的结果。例:从6个运动员中选出4个参加4100 米接力赛。如果甲、乙都不能跑第一棒,那么共有多少种不同的参赛方案?分析:若不受条件限制,则参赛方案有A64=360种,但其中限制甲、乙两人不能跑第一棒,即跑第一棒的只能是其他的人,而这4人在第一棒中出现的可能性为4/6故所求参赛方案有46A64=240种。答案:240种。十三、“树图”表示法 对某些分步进行的问题,可依次对每步可能出现的情况用“树”状图形表示出来。例:四人各写出一张贺卡,先集中起来,然后每人从中拿一张别人送出的贺卡,则四张贺卡的不同分配方式有( )种。A.6 B.9 C.11 D.32分析:将四张贺卡分别记为A,B,C,D。由题意,某人(不妨设为A卡的供卡人)取卡有3种情况。因此将卡的不同分配方式分为三类,对于每一类,其它人依次取卡分步进行。为避免重复或遗漏现象,可用树状图表示。 ADC ADB ABCBCDA CDAB DCAB DAC DBA CBA所以共有9种不同的分配方式。又或:分析:设4人为甲、乙、丙、丁,则甲送出的卡片可以且只可以由其他三人中的一人收到,故有3种分配方式。以乙收到为例,其他人收到卡片的情况可分为两类:第一类,甲收到乙送出的卡片,这时丙、丁只有互送卡片1种分配方式;第二类,甲收到的不是乙送出的卡片,这时,甲收到卡片的方式有2种(分别是丙或丁送出的),对每一种情况,丙、丁收到卡片的方式只有1种。因此,根据分步计数原理,不同的分配方式有:3(12)9(种)。注意:解题的关键在第2个人和第3个人的拿法,只要给他们规定一个拿卡的顺序,依次进行,则根据分步计数原理即可求得。例. 把棵不同的蔬菜,分别捆成捆,在下列情况下,分别有多少分捆的方法?每捆棵;一捆3棵,一捆2棵,一捆1棵.解: 例. 把6棵不同的菜,分别种在3块不同的土地上,在下列情况下,分别有多少种植方法? 每块地上种2棵; 甲地3棵,乙地2棵,丙地1棵; 一块地上3棵,一块地上2棵,一块地上1棵.解: 变式:如果是7棵不同的菜,种到3块土地上,一块地上3棵,一块地上2棵,还有一块地上2棵呢?答案为 典型易错题:例1 某天有六节不同的课,若第一节排数学,或第六节排体育,问共有多少种不同的排法? 错解 数学排第一节的排法有种,体育排第六节的排法也有种,根据加法原理,第一节排数学或排体育的排法共有2240种剖析 在数学排第一节的排法中,存在着体育排第六节的排法,在排体育第六节的排法中,存在着数学排第一节的排法,它重复计算了数学排第一节,同时体育排第六节的排法,即多算种。正确结果是:216种例2 从4名男生3名女生中选3人成立科技小组,问当选者中至少有一名男生和一名女生的选法有几种?错解 先选一名男生,有种选法,再选一名女生,有种选法,最后从余下的5名学生中选一名有种选法,故共有选法60种剖析 上述解法中,每一种选法都符合要求,但是否有重复计算呢?为此我们不妨设4名男生为A1,A2,A3,A4,3名女生为B1,B2,B3,把上面选法中含有一名男生的选法分为4类。在含有男生A1的一类的选法有:A1,B1,A2,即先选A1,再选B1,最后选A2;在含有男生A2的一类中有A2, B1,A1,即先选A2,再选B1,最后选A1。显然这两种选法被重复计算了。因此上述解法是错误的。错误的原因在于没有将符合要求的选法进行正确分类,分类要不重不漏。正解 以男生人数分类,则符合条件的有且仅有两类,一类是男生一名女生两名,有种选法,另一类是男生两名女生一名,有。故共有30种例3 n个不同的球放入n1个不同的盒子,假设每个盒子都有足够大的容量,问每个盒子中至少有一个球的放法共有多少种?错解 先在每盒子中放入一球共有种放法,再将剩下的一球放入,有n1种放法。由乘法原理,共有放法(n1)(n1)n!种.剖析 将这n个球和n1个盒子均依次编号,设先在每盒中放入一球时,有一种放法是第I号盒子恰好放入第I号球,其中I1,2,n1,然后再考虑剩下的第n号球的放法,假设第n号球恰好放入第1号盒,这样,除1号盒中放有第一号与第n号两个球外,其余各盒均只放有一个与盒子同号的球,若先在每盒中放入一球时,第n号球恰好放入第1号盒,而其余各盒所放的球均与盒子同号,这样,再将剩下的1号球放入盒中时,必有一种放法是恰好放入1号盒,这时,出现与前一次完全相同的结果,但在上面的解法中被当成两种不同的放法来计算,故重复。正确的解法是:先从n个球中任取2个组成一组,共有种方法;然后把这2个球当作1份,另外n2个球每个球算1份,共有n1份,把这n1份分放在n1个盒子中,且使每盒中恰有1份,共有种放法,由乘法原理,符合题意的放法种数为n!例4、将4个不同的球放入4个不同的盆子内(1) 共有几种放法?(2) 恰有一个盆子未放球,共几种放法?(3) 恰有一个盆子内有2球,共几种放法?(4) 恰有两个盆子内未放球,共有几种放法?解题思路分析: (1)把球作为研究对象,事件指所有球都放完。因每一只球都有四种放法,故由分步计数原理,共有44=256(种); (2)问题即为“4个球放入三个盆子,每个盆子内都要放球,共有几种放法?”第一步是把4只球分成2,1,1三组,共有C42种放法;第二步把3组球放入三个盆子中去(作全排列),有A43种;由分步计数原理,共有N=C42A43(种)评注:第二步应是A43,而不是A33,因还要选从四个盆子中选三个盆子,然后作全排。 (3)仔细审题,认清问题的本质。“恰有一盆子内入2个球”即另三个盆子放2球,也即另外3个盆子恰有一个空盆,因此,“恰有一个盆子放2球”与“恰有一个盆子不放球”是等价的。 (4)先取走两个不放球的盆子,有C42种取法;其次将4球分两类放入所剩2盆;第一类均匀放入,有C42C22种放法;第二步按3,1分组放入,有C43C11A22种放法。故有N=C42(C42C22+C43C11A22)=84(种)。例5、用0,1,2,3,4五个数字组成各位数字不重复的五位数,若按由小到大排列,试问:(1)42130是第几个数?(2)第60个数是什么?解题思路分析:(1)要知道42130是第几个数,只要知道比它小的有几个数,就基本解决了。根据数的大小比较的原则,比42130小的数可以分成如下几类: 1,2,3型的; 40,41型的; 420型的; 4200型的。各类的数分别有C31A44,C21A33,C11A22,C11A11个,所以比42130小的数有C31A44+C21A33+C11A22+C11A11=87个,42130是第88个。 (2)万位1的数,即1型的数,有A44=24个; 万位为2的,同样有A44=24个; 万位为3的也有24个,所以第60个数是万位为3的这一类数中的第12个数,再具体分类: 30型的有A33=6个; 31型的有A33=6个所以,第12个数是31型的数中最大的一个即为31420。评注:此类题型称为字典式排列问题,解题的关键在于根据题意正确地进行分类,分类的关键是采用类似查字典的方法,从高位向低位,一位一位地考察各位上所取数字的可能性。区域涂色问题1、 根据分步计数原理,对各个区域分步涂色,这是处理染色问题的基本方法。例1、 用5种不同的颜色给图中标、的各部分涂色,每部分只涂一种颜色,相邻部分涂不同颜色,则不同的涂色方法有多少种? 分析:先给号区域涂色有5种方法,再给号涂色有4种方法,接着给号涂色方法有3种,由于号与、不相邻,因此号有4种涂法,根据分步计数原理,不同的涂色方法有2、 根据共用了多少种颜色讨论,分别计算出各种出各种情形的种数,再用加法原理求出不同的涂色方法种数。例2、(2003江苏卷)四种不同的颜色涂在如图所示的6个区域,且相邻两个区域不能同色。2分析:依题意只能选用4种颜色,要分四类:(1)与同色、与同色,则有;(2)与同色、与同色,则有;(3)与同色、与同色,则有;(4)与同色、与同色,则有;(5)与同色、与同色,则有;所以根据加法原理得涂色方法总数为5=12024315例3、(2003年全国高考题)如图所示,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着方法共有多少种? 分析:依题意至少要用3种颜色1) 当先用三种颜色时,区域2与4必须同色,2) 区域3与5必须同色,故有种;3) 当用四种颜色时,若区域2与4同色,4) 则区域3与5不同色,有种;若区域3与5同色,则区域2与4不同色,有种,故用四种颜色时共有2种。由加法原理可知满足题意的着色方法共有+2=24+224=723、 根据某两个不相邻区域是否同色分类讨论,从某两个不相邻区域同色与不同色入手,分别计算出两种情形的种数,再用加法原理求出不同涂色方法总数。1234例4用红、黄、蓝、白、黑五种颜色涂在如图所示的四个区域内,每个区域涂一种颜色,相邻两个区域涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法?分析:可把问题分为三类:(1) 四格涂不同的颜色,方法种数为;(2) 有且仅两个区域相同的颜色,即只有一组对角小方格涂相同的颜色,涂法种数为;5) 两组对角小方格分别涂相同的颜色,涂法种数为,因此,所求的涂法种数为4、 根据相间区使用颜色的种类分类ABCDEF例5如图, 6个扇形区域A、B、C、D、E、F,现给这6个区域着色,要求同一区域涂同一种颜色,相邻的两个区域不得使用同一种颜色,现有4种不同的颜色可解(1)当相间区域A、C、E着同一种颜色时,有4种着色方法,此时,B、D、F各有3种着色方法,此时,B、D、F各有3种着色方法故有种方法。(2)当相间区域A、C、E着色两不同的颜色时,有种着色方法,此时B、D、F有种着色方法,故共有种着色方法。 (3)当相间区域A、C、E着三种不同的颜色时有种着色方法,此时B、D、F各有2种着色方法。此时共有种方法。故总计有108+432+192=732种方法。说明:关于扇形区域区域涂色问题还可以用数列中的递推公来解决。 如:如图,把一个圆分成个扇形,每个扇形用红、白、蓝、黑四色之一染色,要求相邻扇形不同色,有多少种染色方法?解:设分成n个扇形时染色方法为种(1) 当n=2时、有=12种,即=12(2) 当分成n个扇形,如图,与不同色,与 不同色,与不同色,共有种染色方法, 但由于与邻,所以应排除与同色的情形;与同色时,可把、 看成一个扇形,与前个扇形加在一起为个扇形,此时有种染色法,故有如下递推关系: 二、 点的涂色问题方法有:(1)可根据共用了多少种颜色分类讨论,(2)根据相对顶点是否同色分类讨论,(3)将空间问题平面化,转化成区域涂色问题。例6、将一个四棱锥的每个顶点染上一种颜色,并使同一条棱的两端点异色,如果只有5种颜色可供使用,那么不同的染色方法的总数是多少?解法一:满足题设条件的染色至少要用三种颜色。1若恰用三种颜色,可先从五种颜色中任选一种染顶点S,再从余下的四种颜色中任选两种涂A、B、C、D四点,此时只能A与C、B与D分别同色,故有种方法。2若恰用四种颜色染色,可以先从五种颜色中任选一种颜色染顶点S,再从余下的四种颜色中任选两种染A与B,由于A、B颜色可以交换,故有种染法;再从余下的两种颜色中任选一种染D或C,而D与C,而D与C中另一个只需染与其相对顶点同色即可,故有种方法。3若恰用五种颜色染色,有种染色法 综上所知,满足题意的染色方法数为60+240+120=420种。 解法二:设想染色按SABCD的顺序进行,对S、A、B染色,有种染色方法。 由于C点的颜色可能与A同色或不同色,这影响到D点颜色的选取方法数,故分类讨论: C与A同色时(此时C对颜色的选取方法唯一),D应与A(C)、S不同色,有3种选择;C与A不同色时,C有2种选择的颜色,D也有2种颜色可供选择,从而对C、D染色有种染色方法。 由乘法原理,总的染色方法是解法三:可把这个问题转化成相邻区域不同色问题:如图,对这五个区域用5种颜色涂色,有多少种不同的涂色方法?SCDAB解答略。三、 线段涂色问题对线段涂色问题,要注意对各条线段依次涂色,主要方法有:1) 根据共用了多少颜色分类讨论2) 根据相对线段是否同色分类讨论。例7、用红、黃、蓝、白四种颜色涂矩形ABCD的四条边,每条边只涂一种颜色,且使相邻两边涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法?解法一:(1)使用四颜色共有种(2)使用三种颜色涂色,则必须将一组对边染成同色,故有种,(3)使用二种颜色时,则两组对边必须分别同色,有种因此,所求的染色方法数为种解法二:涂色按ABBCCDDA的顺序进行,对AB、BC涂色有种涂色方法。由于CD的颜色可能与AB同色或不同色,这影响到DA颜色的选取方法数,故分类讨论:当CD与AB同色时,这时CD对颜色的选取方法唯一,则DA有3种颜色可供选择CD与AB不同色时,CD有两种可供选择的颜色,DA也有两种可供选择的颜色,从而对CD、DA涂色有种涂色方法。由乘法原理,总的涂色方法数为种例8、用六种颜色给正四面体的每条棱染色,要求每条棱只染一种颜色且共顶点的棱涂不同的颜色,问有多少种不同的涂色方法? 解:(1)若恰用三种颜色涂色,则每组对棱必须涂同一颜色,而这三组间的颜色不同,故有种方法。(2)若恰用四种颜色涂色,则三组对棱中有二组对棱的组内对棱涂同色,但组与组之间不同色,故有种方法。(3)若恰用五种颜色涂色,则三组对棱中有一组对棱涂同一种颜色,故有种方法。 (4)若恰用六种颜色涂色,则有种不同的方法。 综上,满足题意的总的染色方法数为种。四、 面涂色问题例9、从给定的六种不同颜色中选用若干种颜色,将一个正方体的6个面涂色,每两个具有公共棱的面涂成不同的颜色,则不同的涂色方案共有多少种?显然,至少需要3三种颜色,由于有多种不同情况,仍应考虑利用加法原理分类、乘法原理分步进行讨论解:根据共用多少种不同的颜色分类讨论(1)用了六种颜色,确定某种颜色所涂面为下底面,则上底颜色可有5种选择,在上、下底已涂好后,再确定其余4种颜色中的某一种所涂面为左侧面,则其余3个面有3!种涂色方案,根据乘法原理ABCDP(2)共用五种颜色,选定五种颜色有种方法,必有两面同色(必为相对面),确定为上、下底面,其颜色可有5种选择,再确定一种颜色为左侧面,此时的方法数取决于右侧面的颜色,有3种选择(前后面可通过翻转交换)(3)共用四种颜色,仿上分析可得 (4)共用三种颜色,53214例10、四棱锥,用4种不同的颜色涂在四棱锥的各个面上,要求相邻不同色,有多少种涂法? 解:这种面的涂色问题可转化为区域涂色问题,如右图,区域1、2、3、4相当于四个侧面,区域5相当于底面;根据共用颜色多少分类:(1) 最少要用3种颜色,即1与3同色、2与4同色,此时有种;(2) 当用4种颜色时,1与3同色、2与4两组中只能有一组同色,此时有;故满足题意总的涂色方法总方法交总数为解排列组合应用题的21种策略排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.五人并排站成一排,如果必须相邻且在的右边,那么不同的排法种数有( )A、60种 B、48种 C、36种 D、24种解析:把视为一人,且固定在的右边,则本题相当于4人的全排列,种,答案:.2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( )A、1440种 B、3600种 C、4820种 D、4800种解析:除甲乙外,其余5个排列数为种,再用甲乙去插6个空位有种,不同的排法种数是种,选.3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例3.五人并排站成一排,如果必须站在的右边(可以不相邻)那么不同的排法种数是( )A、24种 B、60种 C、90种 D、120种解析:在的右边与在的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即种,选.4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( )A、6种 B、9种 C、11种 D、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有331=9种填法,选.5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( )A、1260种 B、2025种 C、2520种 D、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有种,选.(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( )A、种 B、种 C、种 D、种答案:.6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3组有种方法,再把三组学生分配到三所学校有种,故共有种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为( )A、480种 B、240种 C、120种 D、96种答案:.7.名额分配问题隔板法:例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:若甲乙都不参加,则有派遣方案种;若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有方法,所以共有;若乙参加而甲不参加同理也有种;若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有种,共有方法.所以共有不同的派遣方法总数为种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有( )A、210种 B、300种 C、464种 D、600种解析:按题意,个位数字只可能是0,1,2,3,4共5种情况,分别有个,个,合并总计300个,选.(2)从1,2,3,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做共有14个元素,不能被7整除的数组成的集合记做共有86个元素;由此可知,从中任取2个元素的取法有,从中任取一个,又从中任取一个共有,两种情形共符合要求的取法有种.(3)从1,2,3,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?解析:将分成四个不相交的子集,能被4整除的数集;能被4除余1的数集,能被4除余2的数集,能被4除余3的数集,易见这四个集合中每一个有25个元素;从中任取两个数符合要;从中各取一个数也符合要求;从中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有种.10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式.例10.从6名运动员中选出4人参加4100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集=6人中任取4人参赛的排列,A=甲跑第一棒的排列,B=乙跑第四棒的排列,根据求集合元素个数的公式得参赛方法共有:种.11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。例11.1名老师和4名获奖同学排成一排照相留念,若老师不站两端则有不同的排法有多少种?解析:老师在中间三个位置上选一个有种,4名同学在其余4个位置上有种方法;所以共有种。.12.多排问题单排法:把元素排成几排的问题可归结为一排考虑,再分段处理。例12.(1)6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是( )A、36种 B、120种 C、720种 D、1440种解析:前后两排可看成一排的两段,因此本题可看成6个不同的元素排成一排,共种,选.(2)8个不同的元素排成前后两排,每排4个元素,其中某2个元素要排在前排,某1个元素排在后排,有多少种不同排法?解析:看成一排,某2个元素在前半段四个位置中选排2个,有种,某1个元素排在后半段的四个位置中选一个有种,其余5个元素任排5个位置上有种,故共有种排法.13.“至少”“至多”问题用间接排除法或分类法:例13.从4台甲型和5台乙型电视机中任取3台,其中至少要甲型和乙 型电视机各一台,则不同的取法共有 ( )A、140种 B、80种 C、70种 D、35种解析1:逆向思考,至少各一台的反面就是分别只取一种型号,不取另一种型号的电视机,故不同的取法共有种,选.解析2:至少要甲型和乙 型电视机各一台可分两种情况:甲型1台乙型2台;甲型2台乙型1台;故不同的取法有台,选.14.选排问题先取后排:从几类元素中取出符合题意的几个元素,再安排到一定的位置上,可用先取后排法.例14.(1)四个不同球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法有多少种?解析:先取四个球中二个为一组,另二组各一个球的方法有种,再排:在四个盒中每次排3个有种,故共有种.(2)9名乒乓球运动员,其中男5名,女4名,现在要进行混合双打训练,有多少种不同的分组方法?解析:先取男女运动员各2名,有种,这四名运动员混和双打练习有中排法,故共有种.15.部分合条件问题排除法:在选取的总数中,只有一部分合条件,可以从总数中减去不符合条件数,即为所求.例15.(1)以正方体的顶点为顶点的四面体共有( )A、70种 B、64种 C、58种 D、52种解析:正方体8个顶点从中每次取四点,理论上可构成四面体,但6个表面和6个对角面的四个顶点共面都不能构成四面体,所以四面体实际共有个.(2)四面体的顶点和各棱中点共10点,在其中取4个不共面的点,不同的取法共有( )A、150种 B、147种 C、144种 D、141种解析:10个点中任取4个点共有种,其中四点共面的有三种情况:在四面体的四个面上,每面内四点共面的情况为,四个面共有个;过空间四边形各边中点的平行四边形共3个;过棱上三点与对棱中点的三角形共6个.所以四点不共面的情况的种数是种.16.圆排问题单排法:把个不同元素放在圆周个无编号位置上的排列,顺序(例如按顺时钟)不同的排法才算不同的排列,而顺序相同(即旋转一下就可以重合)的排法认为是相同的,它与普通排列的区别在于只计顺序而首位、末位之分,下列个普通排列:在圆排列中只算一种,因为旋转后可以重合,故认为相同,个元素的圆排列数有种.因此可将某个元素固定展成单排,其它的元素全排列.例16.5对姐妹站成一圈,要求每对姐妹相邻,有多少种不同站法?解析:首先可让5位姐姐站成一圈,属圆排列有种,然后在让插入其间,每位均可插入其姐姐的左边和右边,有2种方式,故不同的安排方式种不同站法.说明:从个不同元素中取出个元素作圆形排列共有种不同排法.17.可重复的排列求幂法:允许重复排列问题的特点是以元素为研究对象,元素不受位置的约束,可逐一安排

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论