河南省平顶山市第三高级中学高一数学 13算法案例(第3课时) 课件.ppt_第1页
河南省平顶山市第三高级中学高一数学 13算法案例(第3课时) 课件.ppt_第2页
河南省平顶山市第三高级中学高一数学 13算法案例(第3课时) 课件.ppt_第3页
河南省平顶山市第三高级中学高一数学 13算法案例(第3课时) 课件.ppt_第4页
河南省平顶山市第三高级中学高一数学 13算法案例(第3课时) 课件.ppt_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

算法案例进位制 一 进位制 1 什么是进位制 2 最常见的进位制是什么 除此之外还有哪些常见的进位制 请举例说明 进位制是人们为了计数和运算方便而约定的记数系统 1 我们了解十进制吗 所谓的十进制 它是如何构成的 十进制由两个部分构成 例如 3721 其它进位制的数又是如何的呢 第一 它有0 1 2 3 4 5 6 7 8 9十个数字 第二 它有 权位 即从右往左为个位 十位 百位 千位等等 用10个数字来记数 称基数为10 表示有 1个1 2个十 7个百即7个10的平方 3个千即3个10的立方 2 二进制 二进制是用0 1两个数字来描述的 如11001等 二进制的表示方法 区分的写法 11001 2 或者 11001 2 8进制呢 如7342 8 k进制呢 anan 1an 2 a2a1 k 二 二进制与十进制的转换 1 二进制数转化为十进制数 例1将二进制数110011 2 化成十进制数 解 根据进位制的定义可知 所以 110011 2 51 练习 将下面的二进制数化为十进制数 1 11 2 111 3 1111 4 11111 2 十进制转换为二进制 除2取余法 用2连续去除89或所得的商 然后取余数 例2把89化为二进制数 解 根据 逢二进一 的原则 有 89 2 44 1 2 2 22 0 1 2 2 2 11 0 0 1 2 2 2 2 5 1 0 0 1 5 2 2 1 2 2 2 2 22 1 1 0 0 1 89 1 26 0 25 1 24 1 23 0 22 0 21 1 20 所以 89 1011001 2 2 2 2 23 2 1 0 0 1 2 2 24 22 2 0 0 1 2 25 23 22 0 0 1 26 24 23 0 0 21 89 2 44 1 44 2 22 0 22 2 11 0 11 2 5 1 2 2 2 2 2 2 1 1 0 0 1 所以89 2 2 2 2 2 2 1 1 0 0 1 2 十进制转换为二进制 例2把89化为二进制数 5 2 2 2 1 2 0 1 0 余数 11 22 44 89 2 2 2 2 0 1 1 0 1 注意 1 最后一步商为0 2 将上式各步所得的余数从下到上排列 得到 89 1011001 2 练习 将下面的十进制数化为二进制数 1 10 2 20 3 128 4 256 例3把89化为五进制数 3 十进制转换为其它进制 解 根据除k取余法 以5作为除数 相应的除法算式为 所以 89 324 5 将k进制数a转换为十进制数 共有n位 的程序 a anan 1 a3a2a1 k ank n 1 an 1k n 2 a3k2 a2k1 a1k0 b a1k0 b a2k1 b b a3k2 b b ankn 1 b ai geta i get函数用于取出a的右数第i位数 inputa k n i 1 b 0 whilei n t geta i b t k i 1 b i i 1 we

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论