




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第23章 旋转考试时间:120分钟;满分:150分学校:_姓名:_班级:_考号:_题号一二三总分得分 评卷人 得 分 一选择题(共10小题,满分40分,每小题4分)1(4分)下列运动属于旋转的是()A滚动过程中的篮球的滚动B钟表的钟摆的摆动C气球升空的运动D一个图形沿某直线对折的过程2(4分)如图,ODC是由OAB绕点O顺时针旋转40后得到的图形,若点D恰好落在AB上,且AOC=105,则DOB的度数是()A40 B30 C25 D203(4分)正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是()A36 B54 C72 D1084(4分)在平面直角坐标系中,把点P(5,4)向右平移9个单位得到点P1,再将点P1绕原点顺时针旋转90得到点P2,则点P2的坐标是()A(4,4) B(4,4) C(4,4) D(4,4)5(4分)在平面内由极点、极轴和极径组成的坐标系叫做极坐标系如图,在平面上取定一点O称为极点;从点O出发引一条射线Ox称为极轴;线段OP的长度称为极径点P的极坐标就可以用线段OP的长度以及从Ox转动到OP的角度(规定逆时针方向转动角度为正)来确定,即P(3,60)或P(3,300)或P(3,420)等,则点P关于点O成中心对称的点Q的极坐标表示不正确的是()AQ(3,240)BQ(3,120) CQ(3,600) DQ(3,500)6(4分)在平面直角坐标系中,点P(3,5)关于原点对称的点的坐标是()A(3,5) B(3,5)C(3,5) D(3,5)7(4分)下列各图,均是圆与等边三角形的组合,则不是轴对称图形的是() A B C D8(4分)将AOB绕点O旋转180得到DOE,则下列作图正确的是() A B C D9(4分)已知正方形的一条对角线长为2,把正方形经过某种图形变换后的面积为4,则图形变换是()A相似变换 B旋转变换 C轴对称变换 D平移变换10(4分)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,从一个格点移动到与之相距的另一个格点的运动称为一次跳马变换,例如,在44的正方形网格图形中(如图1),从点A经过一次跳马变换可以到达点B,C,D,E等处現有1010的正方形网格图形(如图2),则从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是()A7 B8 C9 D10 评卷人 得 分 二填空题(共4小题,满分20分,每小题5分)11(5分)如图,将RtABC绕直角顶点C顺时针旋转90,得到DEC,连接AD,若BAC=25,则BAD= 12(5分)如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为 13(5分)在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B关于原点O对称,则ab= 14(5分)如图,点O是ABCD的对称中心,ADAB,E、F是AB边上的点,且EF=AB;G、H是BC边上的点,且GH=BC,若S1,S2分别表示EOF和GOH的面积,则S1与S2之间的等量关系是 评卷人 得 分 三解答题(共9小题,满分90分)15(8分)如图所示,将AOB绕着点O旋转180度得到DOC,过点O的一条直线分别交BA、CD的延长线于点E、F,求证:AE=DF16(8分)如图,ABO与CDO关于O点中心对称,点E,F在线段AC上,且AF=CE,求证:FD=BE17(8分)在平面直角坐标系中,把点P(5,3)向右平移8个单位得到点P1,P1关于原点的对称点是点P2,求点P2的坐标及P2到原点的距离18(8分)如图,在44的方格纸中,ABC的三个顶点都在格点上(1)在图1中,画出一个与ABC成中心对称的格点三角形;(2)在图2中,画出一个与ABC成轴对称且与ABC有公共边的格点三角形;(3)在图3中,画出ABC绕着点C按顺时针方向旋转90后的三角形19(10分)如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且EDF=45,将DAE绕点D按逆时针方向旋转90得到DCM(1)求证:EF=MF;(2)当AE=1时,求EF的长20(10分)如图,在ABC中,AB=AC,若将ABC绕点C顺时针旋转180得到EFC,连接AF、BE(1)求证:四边形ABEF是平行四边形;(2)当ABC为多少度时,四边形ABEF为矩形?请说明理由21(12分)如图,在ABC中,ABC=90,BAC=60,AC绕点C顺时针旋转60至CD,F是CD的中点,连接BF交AC于点E,连接AD求证:(1)AC=BF;(2)四边形ABFD是平行四边形22(12分)如图,已知A(2,3)和直线y=x(1)分别写出点A关于直线y=x的对称点B和关于原点的对称点C的坐标(2)若点D是点B关于原点的对称点,判断四边形ABCD的形状,并说明理由23(14分)如图,矩形ABCD中,AC=2AB,将矩形ABCD绕点A旋转得到矩形ABCD,使点B的对应点B落在AC上,BC交AD于点E,在BC上取点F,使BF=AB(1)求证:AE=CE(2)求FBB的度数(3)已知AB=2,求BF的长xx年九年级上学期 第23章 旋转 单元测试卷参考答案与试题解析一选择题(共10小题,满分40分,每小题4分)1【分析】根据旋转变换的概念,对选项进行一一分析,排除错误答案【解答】解:A、滚动过程中的篮球属于滚动,不是绕着某一个固定的点转动,不属旋转;B、钟表的钟摆的摆动,符合旋转变换的定义,属于旋转;C、气球升空的运动是平移,不属于旋转;D、一个图形沿某直线对折的过程是轴对称,不属于旋转故选:B【点评】本题考查旋转的概念旋转变换:一个图形围绕一个定点旋转一定的角度,得到另一个图形,这种变换称为旋转变换要注意旋转的三要素:定点旋转中心;旋转方向;旋转角度2【分析】根据旋转的性质求出AOD和BOC的度数,计算出DOB的度数【解答】解:由题意得,AOD=BOC=40,又AOC=105,DOB=1054040=25故选:C【点评】本题考查的是旋转的性质,掌握旋转角的概念是解题的关键3【分析】根据旋转的定义,最小旋转角即为正五边形的中心角【解答】解:正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是=72度故选:C【点评】考查图形的旋转与重合,理解旋转对称图形的定义是解决本题的关键【链接】旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角4【分析】首先利用平移的性质得出P1(4,4),再利用旋转变换的性质可得结论;【解答】解:P(5,4),点P(5,4)向右平移9个单位得到点P1P1(4,4),将点P1绕原点顺时针旋转90得到点P2,则点P2的坐标是(4,4),故选:A【点评】本题考查坐标与图形变化旋转以及平移,解题的关键是理解题意,熟练掌握基本知识,属于中考基础题5【分析】根据中心对称的性质解答即可【解答】解:P(3,60)或P(3,300)或P(3,420),由点P关于点O成中心对称的点Q可得:点Q的极坐标为(3,240),(3,120),(3,600),故选:D【点评】此题考查中心对称的问题,关键是根据中心对称的性质解答6【分析】根据关于原点对称的点的坐标特点解答【解答】解:点P(3,5)关于原点对称的点的坐标是(3,5),故选:C【点评】本题考查的是关于原点的对称的点的坐标,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(x,y),即关于原点的对称点,横纵坐标都变成相反数7【分析】根据轴对称图形的概念对各选项分析判断即可得解【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误故选:B【点评】本题考查了利用轴对称设计图案,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合8【分析】根据旋转的性质,AOB绕点O旋转180得到DOE,点A与点D、B与E关于点O成中心对称解答【解答】解:AOB绕点O旋转180得到DOE,作图正确是C选项图形故选:C【点评】本题考查了利用旋转变换作图,熟记旋转的性质,判断出对应点关于点O对称是解题的关键9【分析】根据正方形的性质利用勾股定理可求得其边长,从而就不难求得其面积,根据其面积不变解答即可【解答】解:由题意得,正方形的边长为,故面积为2,把正方形经过某种图形平移变换后的面积为4,故选:D【点评】主要考查到正方形的性质和面积的求法要注意:正方形的对角线和正方形的两条相邻的边构成等腰直角三角形10【分析】根据从一个格点移动到与之相距的另一个格点的运动称为一次跳马变换,计算出按ADF的方向连续变换4次后点M的位置,再根据点N的位置进行适当的变换,即可得到变换总次数【解答】解:如图1,连接AD,DF,则AF=3,两次变换相当于向右移动3格,向上移动3格,又MN=10,103=,(不是整数)按ADF的方向连续变换4次后,相当于向右移动了423=6格,向上移动了423=6格,此时M位于如图2所示的正方形网格的点G处,再按如图所示的方式变换4次即可到达点N处,从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是4+4=8次,故选:B【点评】本题主要考查了几何变换的类型以及勾股定理的运用,解题时注意:在平移变换下,对应线段平行且相等,两对应点连线段与给定的有向线段平行(共线)且相等解决问题的关键是找出变换的规律二填空题(共4小题,满分20分,每小题5分)11【分析】根据旋转的性质可得AC=CD,再判断出ACD是等腰直角三角形,然后根据等腰直角三角形的性质求出CAD=45,由BAD=BAC+CAD可得答案【解答】解:RtABC绕其直角顶点C按顺时针方向旋转90后得到RtDEC,AC=CD,ACD是等腰直角三角形,CAD=45,则BAD=BAC+CAD=25+45=70,故答案为:70【点评】本题考查了旋转的性质,等腰直角三角形的判定与性质,熟记各性质并准确识图是解题的关键12【分析】由旋转的性质得到AD=EF,AB=AE,再由DE=EF,等量代换得到AD=DE,即三角形AED为等腰直角三角形,利用勾股定理求出AE的长,即为AB的长【解答】解:由旋转得:AD=EF,AB=AE,D=90,DE=EF,AD=DE,即ADE为等腰直角三角形,根据勾股定理得:AE=3,则AB=AE=3,故答案为:3【点评】此题考查了旋转的性质,矩形的性质,熟练掌握旋转的性质是解本题的关键13【分析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案【解答】解:点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,a=4,b=3,则ab=12故答案为:12【点评】此题主要考查了关于原点对称点的性质,正确得出a,b的值是解题关键14【分析】根据同高的两个三角形面积之比等于底边之比得出=,=,再由点O是ABCD的对称中心,根据平行四边形的性质可得SAOB=SBOC=SABCD,从而得出S1与S2之间的等量关系【解答】解:=,=,S1=SAOB,S2=SBOC点O是ABCD的对称中心,SAOB=SBOC=SABCD,=即S1与S2之间的等量关系是=故答案为=【点评】本题考查了中心对称,三角形的面积,平行四边形的性质,根据同高的两个三角形面积之比等于底边之比得出=,=是解题的关键三解答题(共9小题,满分90分)15【分析】先利用旋转的性质得OB=OC,AB=CD,B=C,再证明OBEOCF得到BE=CF,从而可判断AE=DF【解答】证明:AOB绕着点O旋转180度得到DOC,OB=OC,AB=CD,B=C,在OBE和OCF中,OBEOCF,BE=CF,BEAB=CFCD,即AE=DF【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等也考查了全等三角形的判定与性质16【分析】根据中心对称的性质可得BO=DO,AO=CO,再利用等式的性质可得FO=EO,然后再证明FODEOB,利用全等三角形的性质可得DF=BE【解答】证明:ABO与CDO关于O点中心对称,BO=DO,AO=CO,AF=CE,AOAF=COCE,FO=EO,在FOD和EOB中,FODEOB(SAS),DF=BE【点评】此题主要考查了中心对称以及全等三角形的判定和性质,关键是掌握关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分17【分析】先利用点平移的坐标规律,把点P的横坐标加上8,纵坐标不变可得到P1点的坐标,再利用关于原点对称的点的坐标特征写出P2点的坐标,然后利用两点间的距离公式计算点P2到原点的距离【解答】解:点P(5,3)向右平移8个单位得到点P1,P1点的坐标为(3,3),P1关于原点的对称点是点P2,P2点的坐标为(3,3),P2到原点的距离=3【点评】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数18【分析】(1)根据中心对称的性质即可作出图形;(2)根据轴对称的性质即可作出图形;(3)根据旋转的性质即可求出图形【解答】解:(1)如图所示,DCE为所求作(2)如图所示,ACD为所求作(3)如图所示ECD为所求作【点评】本题考查图形变换,解题的关键是正确理解图形变换的性质,本题属于基础题型19【分析】(1)由旋转的性质可得DE=DM,EDM为直角,可得出EDF+MDF=90,由EDF=45,得到MDF为45,可得出EDF=MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;(2)由第一问的全等得到AE=CM=1,正方形的边长为3,用ABAE求出EB的长,再由BC+CM求出BM的长,设EF=MF=x,可得出BF=BMFM=BMEF=4x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为EF的长【解答】(1)证明:DAE绕点D逆时针旋转90得到DCM,DE=DM,EDM=90,EDF=45,FDM=45,EDF=FDM又DF=DF,DE=DM,DEFDMF,EF=MF;(2)解:设EF=MF=x,AE=CM=1,AB=BC=3,EB=ABAE=31=2,BM=BC+CM=3+1=4,BF=BMMF=4x在RtEBF中,由勾股定理得EB2+BF2=EF2,即22+(4x)2=x2,解得:x=,则EF的长为【点评】此题考查了旋转的性质,正方形的性质,全等三角形的判定与性质,以及勾股定理,利用了转化及方程的思想,熟练掌握性质及定理是解本题的关键20【分析】(1)根据旋转得出CA=CE,CB=CF,根据平行四边形的判定得出即可;(2)根据等边三角形的判定得出ABC是等边三角形,求出AE=BF,根据矩形的判定得出即可【解答】(1)证明:将ABC绕点C顺时针旋转180得到EFC,ABCEFC,CA=CE,CB=CF,四边形ABEF是平行四边形;(2)解:当ABC=60时,四边形ABEF为矩形,理由是:ABC=60,AB=AC,ABC是等边三角形,AB=AC=BC,CA=CE,CB=CF,AE=BF,四边形ABEF是平行四边形,四边形ABEF是矩形【点评】本题考查了旋转的性质和矩形的判定、平行四边形的判定、等边三角形的性质和判定等知识点,能综合运用知识点进行推理是解此题的关键21【分析】(1)连接AF,由旋转的旋转得到AC=DC,ACD=60,进而ACD是等边三角形,再证四边形ADCF是矩形,根据矩形的对角线相等即可得到AC=BF(2)根据ACD是等边三角形,得到AC=AD,进一步证明AD=BF,再证明AB=DF,即可得到四边形ABFD是平行四边形【解答】解:(1)如图,连接AF,AC绕点C顺时针旋转60至CD,AC=DC,ACD=60,ACD是等边三角形,F是CD的中点,AFCD,AFC=90,在ABC中,ABC=90,BAC=60,ACD=30,ACD=60,BCD=90,又ADC=90,四边形ADCF是矩形,AC=BF(2)ACD是等边三角形,AC=AD,AC=BF,AD=BF,四边形ABCF是矩形,AB=CF,F是CD的中点,DF=CF,AB=DF,四边形ABFD是平行四边形【点评】本题考查了旋转的旋转,解决本题的关键是熟记矩形、平行四边形的性质定理与判定定理22【分析】(1)依据关于直线y=x的对称点的坐标特征以及关于原点的对称点的坐标特征,即可得到B(3,2),C(2,3);(2)先依据轴对称和中心对称的性质,得到四边形ABCD是平行四边形,再依据AC=BD,即可得出四边形ABCD是矩形【解答】解:(1)A(2,3),点A关于直线y=x的对称点B和关于原点的对称点C的坐标分别为:B(3,2),C(2,3);(2)四边形ABCD是矩形理由如下:B(3,2)关于原点的对称点为D(3,2),又点B点D关于原点对称,BO
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年医疗招聘考试题库医疗信息员笔试预测题
- 2025年传媒行业招聘考试模拟试题及答案解析
- 2025年旅游景区开发运营项目发展计划
- 护理领导力培训知识课件
- 2025年1,6-己二醇项目合作计划书
- 2025年航天器热控系统组件及零部件项目合作计划书
- 2025年机械化农业及园艺机具项目合作计划书
- 2025年抗精神病药品项目建议书
- 辽宁省抚顺市新抚区2024-2025学年八年级下学期期末教学质量检测英语试卷(含答案无听力原文及音频)
- 抗菌药物合理使用课件
- 2025年城市燃气储气罐采购安装与运营维护服务合同范本
- 病房消毒及卫生管理课件
- 2025年国家公务员考录《行测》真题及参考答案
- 2025年城市管理笔试高频考点
- 艾滋病科普宣传课件
- 江苏省淮阴县2025年上半年公开招聘村务工作者试题含答案分析
- 心脏解剖课件模板
- 无人机培训招生宣讲
- 中国系统性红斑狼疮诊疗指南(2025版)解读
- 2025年湖北城市建设专业国土空间规划高、中级职务水平能力测试(城乡规划)历年参考题库含答案详解(5卷)
- 2025-2026学年冀教版(2024)小学数学一年级上册教学计划及进度表
评论
0/150
提交评论