仿射非线系统状态方程的任意阶近似解.doc_第1页
仿射非线系统状态方程的任意阶近似解.doc_第2页
仿射非线系统状态方程的任意阶近似解.doc_第3页
仿射非线系统状态方程的任意阶近似解.doc_第4页
仿射非线系统状态方程的任意阶近似解.doc_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

30 6 2008 6 Journal of Un iversity of Science and Technology BeijingVol . 30 No. 6Jun . 2008/dy999/article_396_4440_1.shtml1 ,2) 2) 2)1) , 102600 2) , 100083,. ,Volterra . ,.; ; ; Volterra ; ; TP 273Any order a pproximate sol ut ion of the state equat ion f or an aff ine nonl inear systemCA O S haoz hong1 , 2) , L I U Hepi ng2) , T U X uy an2)1) College of Info r matio n & Mechanical Engineering , Beijing Instit ute of Grap hic Co mmunicatio n , Beijing 102600 , China2) School of Info r matio n Engineering , U niversit y of Science and Technology Beijing , Beijing 100083 , ChinaABSTRACT The state equatio n of an typical affine no nlinear system was solved wit h t he ordinary differential equatio n t heory. Byutilizing t he expansio n exp ressio n of equilibrium point of t he system , t he ho mogeneous equatio ns solutio n was obtained , and t hen t heno nlinear differential equatio n was equivalent to it s no nlinear Volterras integral equatio n of t he seco nd kind by t he co nstant variatio n met hod . Any order app ro ximate solutio n of t he equatio n was p resented , and it s co nvergence was mat hematically p roved by t he successive app ro ximatio n met hod.KEY WO RDS no nlinear system ; state equatio n ; ordinary differential equatio n ; Volterras integral equatio n ; successive app ro ximatio n met hod ; app ro ximate solutio n, , , , 1- 4 . , . , , ( : 2007 04 12 : 2007 07 25: ( No . 60374032 , No .60673101) ; ( No . KM200810015003) ;( No . TXM2007 - 014223 - 044661) ;( No . 09170107019): ( 1965 ) , E mail : cszh6502 163 . co m) , ;, . 5- 7 , , . ,. , , .,. x = 0 , ; Volterra . , , .6 : 691 1 n :x = f x , u()x M , u U( 1)y = h ( x , u), M n , U .( 1) , x u . , 1- 2 := ( ) +( )xf xg x u( 3) , ( 3) :n1f i ( x) = aij ( t ) x j + i ( x ( t ) , t )( 5)j =, gij ( x) :gij ( x) = bij ( t ) + Gi ( x ( t ) , t )( 6), bij ( t ) x , G ( x ( t ) , t ) .( 5) ( 6) ( 2) , :( ) =( )( ) +( )( ) +x tA t x tB t u ty = h ( x),x M , u U( 2)T( x ( t ) , t ) + G ( x ( t ) , t ) u ( t )( 7),a11 ( t )a12 ( t )a1 n ( t )f ( x) = ( f 1 ( x) , f 2 ( x) , , f n ( x) ) ,a21 ( t )a22 ( t )a2 n ( t )g ( x) =g11 ( x)g12 ( x)g1 m ( x)g21 ( x)g22 ( x)g2 m ( x),g n1 ( x)g n2 ( x)g n m ( x)TA ( t ) =,a n1 ( t )a n2 ( t )a n n ( t )b11 ( t )b12 ( t )b1 m ( t )b21 ( t )b22 ( t )b2 m ( t )x = ( x 1 , x 2 , , x n )T, u = ( u1 , u2 , ,TB ( t ) =,u m ), y = ( y 1 , y 2 , , y p )Tbn1 ( t )bn2 ( t )bnm ( t ), h ( x ) = ( h1 ( x ) , h2 ( x ) , , h p ( x ) ).f , f ( 0) = 0 h ( x) =T( x ( t ) , t ) =( ( x ( t ) , t ) , ( x ( t ) , t ) , ( x ( t ) , t ) ) T ,12nG ( x ( t) , t) =( h1 ( x ) , h2 ( x ) , , h p ( x ) )hi ( x ) hi ( 0) = 0 ( i = 1 , 2 , , p ) , , ( 2) gi j ( x) ( i = 1 , 2 , , n ; j = 1 , 2 , , m )M . , x = 0 ( u = 0) .f ( x) g ( x) x = 0 ( u = 0) :nnnG11 ( x ( t) , t)G12 ( x ( t) , t)G1 m ( x ( t) , t)G21 ( x ( t) , t)G22 ( x ( t) , t)G2 m ( x ( t) , t).Gn1 ( x ( t) , t)Gn2 ( x ( t) , t)Gnm ( x ( t) , t)( 7) ,x ( t ) = A ( t ) x ( t )( 8)x ( t = 0) = x ( 0) .f i ( x) = aij ( t ) x j + aij 1 j 2 ( t ) x j1 x j2 +j = 1nnnj 1 = 1 j 2 = 1Picad :ai j1 j2 j3 ( t ) x j1 x j2 x j3 + +j 1 = 1 j 2 = 1 j 3 = 1x ( t ) = R ( t ) x ( 0)( 9)nnntk123k0aij1 j 2 j ( t ) x jx j x jx j + ( 3)R ( t ) = I +A ( t 1 ) d t 1 +j 1 = 1 j 2 = 1j k = 1t t 1A ( t 1 ) A ( t 2 ) d t 2 d t 1 + +0 0nni ( x ( t ) , t ) = aij1 j 2 ( t ) x j 1 x j 2 +t t 1t n - 11 )( ) nnnj 1 = 1 j 2 = 10 00A ( tA t 2ai j1 j2 j3 ( t ) x j1 x j2 x j3 + +j 1 = 1 j 2 = 1 j 3 = 1A ( t n ) d t n d t n - 1 d t 2 d t 1 + ( 10)nnntaij1 j2 j ( t ) x j x jx j + ( 4)j 1 = 1 j 2 = 1j k = 1k12kR ( t ) = exp0 A () d( 11)692 30 , ( 7) . ( 7). , , :x ( t ) = R ( t ) C ( t )( 12)t0x (0) ( t) = R ( t) x (0) + R ( t)R - 1 () B () u () d, C ( t ) , R ( t ) x ( m ) ( t )t0= R ( t ) x ( 0) + R ( t )R - 1 () R ( 0) = I ( n n ) , C ( t ) C ( 0) = x ( 0) .( 12) ( 7) , ( x ( m - 1) () ,) + B () +G ( x ( m - 1) () ,) u () d, m 1( 16)d R ( t )d tC ( t ) + R ( t )d C ( t ) = A ( t ) R ( t ) C ( t ) +d t, u = 0 , ( 16) 8- 9 ,B ( t ) u ( t ) + ( x ( t ) , t ) + G ( x ( t ) , t ) u ( t ) ,x ( 0) ( t ) = R ( t ) x ( 0)d R ( t )( m ) ( )t( )( 0) + R ( t )d t= A ( t ) R ( t ) , :R ( t ) d C ( t ) =d txt= R t x( x ( m - 1) () ,) dR - 1 ( ) 0( 17)( x ( t ) , t ) + ( B ( t ) + G ( x ( t ) , t ) ) u ( t ) .R ( t ) R - 1 ( t ) , 0 t 2 , C ( t ) :t. C ( t ) = x ( 0) + 0 R- 1 () ( x () ,) +( 14) , ( B () + G ( x () ,) ) u ( t ) d( 13). 0t( 13) ( 12) , ( 7) :( t) = R ( t) x (0) + R ( t) R - 1 () B () u () d,F ( x , u , t ,) =- 1tx ( t) = R ( t) x (0) + R ( t) 0 R() ( x () ,) +R ( t ) R- 1 () ( x ,) + G ( x ,) u () , B () + G ( x () ,) u () d( 14)( 14) Volterra ,:t0x ( 0) ( t) = R ( t ) x ( 0) + R ( t )R - 1 () B () u () dt( 14) :tx ( t ) = ( t ) + 0 F ( x , u , t ,) d( 18), :x ( 0) ( t ) = ( t )t00x(1) ( t) = R ( t) x (0) + R ( t)R - 1 () ( x(0) () ,) +x ( m ) ( t ) = ( t ) +F ( x , u , t ,) d, m 1( 19) B () + G ( x ( 0) () ,) u () d, tx(2) ( t) = R ( t) x (0) + R ( t)R - 1 () ( x(1) () ,) +m x ( m ) (t ) , 0 B () + G ( x ( 1) () ,) u () dt0x ( m ) ( t) = R ( t ) x ( 0) + R ( t )R - 1 () ( x ( m - 1) () ,) + B () +( 14) .i ( t ) F ( x , u , t ,) :(1) i ( t ) t 0 t d , | i ( t ) | Ci ;( 2) Fi ( x , u , t ,) 0 t d , 0 t , ai x i bi , ci u i ei ,G ( x ( m - 1) () ,) u () d| Fx , u , t ,| Ma ( t ) b , i ()iiii( 15)( 15) , , ( 14) Fi ( x , u , t ,) Lip schit | Fi ( x , u , t ,) - Fi ( x , u , t ,) | 6 : 693 N( l)( l - 1)K | x j - x j | , j = 1 , 2 , , N ,j = 1, K ., 10 ,( 19) x ( m ) ( t ) , .miiiix ( m ) ( t ) = x ( 0) ( t ) + x ( l) ( t ) - x ( l - 1) ( t ) ,1 - N Kt , x i ( t ) - x i( t ) l = 1, x ( m ) ( t ) ., , . , , ; , l = 1, x ( l)( l - 1).l = 1.i ( t ) - x i( t ) 3 :| x ( 1)( 0)i ( t ) - x i ( t ) | . 0tt| Fi ( x () , u () , t ,) | M i d= M i t ,0, Volterra - 1| x (2)(1)t(1),m,m, .i ( t) - x i ( t) | 0 Fi ( x() , u () , t ,) -Fi ( xtN( 0)() , u () , t ,) d1 Alberto I. N onli nea r Cont rol S yste ms . 3rd ed. Lo ndo n :( 1)( 0) 120 K | x j () - x j () | dKM t ,Sp ringer Verlag , 1995j = 1N, M = M j .j = 1t22 Ho ng Y G , Cheng D Z. A nal ysis a n d Cont rol on N onli nea r S yste ms . Beijing : Science Press , 2005( , . . :| x (3)(2)(2), 2005)i ( t) - x i ( t) | 0( 1) Fi ( x() , u () , t ,) -3 Xie L L , Guo L . Adaptive co nt rol of a class of discrete time affineFi ( xtN() , u () , t ,) dno nlinear systems. S yst Cont rol L et t , 1998 , 35 : 2024 Popescu M . On minimum quadratic f unctio nal co nt rol of affine( 2)( 1) 1 2 3no nlinear systems. N onli nea r A nal , 2004 , 56 : 11650 K | x j () - x j () dM N K t ,j = 12 3, 5 Pei H L , Zho u Q J . App ro ximate linearizatio n of no nlinear systems a neural net wo r k app roach . Cont rol T heory A p pl , 1998 , 15| x ( l)( l - 1) 1l - 2l - 1 l( 1) : 34i ( t ) - x i( t ) | M Nl !,Kt ,6 Ver hulst F. N onli nea r Di f f erent i al Equat ions a n d Dy na m icalS yste ms . New Yo r k : Spinger Verlag , 1992| x ( l + 1)( l)7 Xu Z G , Hauser J . Higher o rder app ro ximate feedback linearizai( t ) - x i ( t ) | ltio n abo ut a manifold fo r multi inp ut systems. I E E E T ra ns A u0 Fi ( x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论