高中数学第一轮总复习 第5章第34讲向量的数量积课件 理 新课标.ppt_第1页
高中数学第一轮总复习 第5章第34讲向量的数量积课件 理 新课标.ppt_第2页
高中数学第一轮总复习 第5章第34讲向量的数量积课件 理 新课标.ppt_第3页
高中数学第一轮总复习 第5章第34讲向量的数量积课件 理 新课标.ppt_第4页
高中数学第一轮总复习 第5章第34讲向量的数量积课件 理 新课标.ppt_第5页
已阅读5页,还剩38页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第五章 平面向量与复数 向量的数量积 第34讲 1 已知向量a 2 t b 1 2 当t t1时 a b 当t t2时 a b 则t1 t2 解析 向量a 2 t b 1 2 当t t1时 a b 所以2 2 t1 0 则t1 4 当t t2时 a b 所以2 1 2t2 0 则t2 1 4 1 2 若 a b 1 a b 且2a 3b与ka 4b也互相垂直 则k的值为 解析 因为2a 3b与ka 4b垂直 a与b垂直 且 a b 1 所以 2a 3b ka 4b 2ka2 12b2 3k 8 a b 2k 12 0 所以k 6 6 3 下列各结论中正确的有 填正确的序号 0 0 0 0 a 0 a b a b a b 0 a 0或b 0 a b a b c 0 解析 错 实数与向量的乘积为向量 错 a b a b cos a b a b cos a b 错 a b 0 a 0或b 0或a b 4 a b为平面向量 已知a 4 3 2a b 3 18 则a b夹角的余弦值等于 向量的数量积的概念 例1 设a b c是任意的非零平面向量 且相互不共线 则下列命题 a b c c a b 0 a b a b b c a c a b不与c垂直 3a 2b 3a 2b 9 a 2 4 b 2 其中是真命题的有 解析 对于 b与c是不共线的两个非零向量 且a b与c a不能都为零 故 错误 对于 由三角形的两边之差小于第三边知 正确 对于 由向量的数量积的运算法则 得 b c a c a b c b c a c c a b c 0 所以 b c a c a b c 故 错误 对于 由于 3a 2b 3a 2b 9a2 4b2 9 a 2 4 b 2 故 正确 答案 点评 判断上述问题的关键是掌握向量的数量积的含义 向量的数量积的运算律不同于实数乘法的运算律 例如 由a b 0并不能得出a 0或b 0 特别是向量的数量积不满足结合律 即 a b c a b c 变式练习1 下列命题中正确的个数是 若a b 0 则a 0或b 0 a b c a b c 若a b b c b 0 则a c a b b a 若a与b不共线 则a与b的夹角为锐角 1 解析 当a 0时 由a b 0 b 0 且对任意与a垂直的非零向量b 都有a b 0 故 错 a b c表示一个与c共线的向量 而a b c 表示一个与a共线的向量 而c与a通常并不是共线的 故 错 设a与b的夹角为 b与c的夹角为 则由a b b c 得 a cos c cos a c 故 错 由于向量数量积满足交换律 故 正确 向量的夹角是指两向量起点相同时两个方向所成的角 可为 0 180 范围内的角 故 错 答案 1 向量的夹角 点评 数量积的定义和性质是解决垂直问题与夹角问题的重要方法 1 题中通过垂直的充要条件 得到 a b 这是本题的突破口 在等式2a b b2中 不能 约去b 得出 2a b 注意这一点与实数乘法不同 2 题中 向量的夹角范围是 0 并且注意a2 a 2及夹角公式的应用 同时 a与b的夹角是钝角 可以得到a b 0 但这并不是a与b的夹角为钝角的充要条件 因为a与b的夹角是180 时也有a b 0 因此第二问要排除掉a与b反向的情形 想一想 若a与b的夹角是锐角时又要注意什么呢 变式练习2 已知a和b的夹角为60 a 10 b 8 求 1 a b 2 a b与a的夹角 的余弦值 向量的平行与垂直 例3 设向量a 4cos sin b sin 4cos c cos 4sin 1 若a b 2c 求tan 的值 2 求 b c 的取值范围 3 若tan tan 16 求证a b 解析 1 b 2c sin 2cos 4cos 8sin a b 2c 4cos sin 2cos sin 4cos 8sin 4sin 8cos 0 所以tan 2 点评 向量的平行与垂直问题是高考的热门话题 要牢记向量平行与垂直的充要条件 根据已知条件灵活运用 综合应用 点评 本例是向量 函数 导数应用的典型例子 第 2 问中两种解法是解决向量垂直的常见方法 方法1是先利用向量的坐标运算分别求得两个向量的坐标 再利用向量垂直的充要条件 方法2是直接利用向量垂直的充要条件 其过程要用到向量的数量积公式及求模公式 达到同样的求解目的 但运算过程大大简化 值得注意 第 2 问中求函数的单调区间运用的是求导的方法 这是新旧知识交汇点处的综合运用 5 4 已知 a 2 b a与b的夹角为45 要使lb a与a垂直 则l 解析 由lb a与a垂直 lb a a la b a2 0 所以l 2 2 1 两向量的夹角 如图 aob 0 180 叫做向量a与b的夹角 当 0 时 a与b同向 当 180 时 a与b反向 当 90 时 a与b垂直 记作a b 2 向量的数量积的几何意义 对于a b a b cos 其中 b cos 叫向量b在a方向上的射影 为a b的夹角 向量的数量积a b等于a的长度 a 与b在a方向上的射影 b cos 的乘积 当 为锐角时 值为正 当 为钝角时 值为负 当 为直角时 值为零 当 为零时 值为 a b 当 为180 时 值为 a b 4 运用平面向量的数量积应该注意以下几个方面 1 两个向量的夹角的取值范围为 0 180 2 两向量的数量积是一个数 而不是一个向量 并且数量积是向量间的一种乘法 与以前所学的乘法是有区别的 书写时要区分开 3 当a 0时 a b 0不能推出b一定是零向量 因为当a b a 0 时 a b 0 4 用向量的数量积可解决有关长度 角度和垂直的问题 5 对于实数a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论