




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
13 3 1等腰三角形的判定 庄河第八初级中学陈坤 人教2011版八年级上数学 1 等腰三角形的两腰相等 二 等腰三角形的性质 2 等腰三角形的两个底角相等 简写成 等边对等角 3 等腰三角形的顶角平分线 底边上的中线 底边上的高互相重合 简写成 三线合一 4 等腰三角形是轴对称图形 一 等腰三角形的定义 两边相等的三角形是等腰三角形 如何判断一个三角形是等腰三角形呢 在 OAB中 A B 证明 过点O作OC AB 垂足为C OA OB 求证 已知 OCA OCB 90 OAC OBC AAS OA OB 在 OAB中 A B OA OB 求证 已知 已知 OAB中 A B 求证 AO BO 证明 作 AOB的平分线OC 交AB于点C 在 AOC和 BOC中 1 2 A B OC OC AOC BOC AAS AO BO 1 2 1 2 等腰三角形的判定方法 如果一个三角形有两个角相等 那么这两个角所对的边也相等 符号语言 ABC中 B C AB AC 简写成 等角对等边 等角对等边 ABC C 等边对等角 等角对等边 AD BD BD BC 1 如图 1 若AB AC 则 2 若 A 1 则 3 若 2 C 则 等角对等边 BD平分 ABC 1 2 AD BC 2 3 1 3 AB AD 等角对等边 证明 例2求证 如果三角形一个外角的平分线平行于三角形的一边 那么这个三角形是等腰三角形 已知 CAE是 ABC的外角 1 2 AD BC 证明 AD BC 1 B 2 C 1 2 B C AB AC 两直线平行 同位角相等 两直线平行 内错角相等 等边对等角 求证 AB AC 等角对等边 角平分线 平行线 等腰三角形出现 1 如图 把一张矩形的纸沿对角线折叠 重合部分是一个什么特殊三角形 A B C D D F G C E 2 如图 若把这个矩形纸片沿EF折叠 重合部分是一个什么图形 如图 在 ABC中 BO平分 ABC CO平分 ACB MN经过点O 与AB AC相交于点M N 且MN BC 图中有没有等腰三角形 MN BM CN 判断MN BM CN这三条线段之间的长度关系 BMO和 CNO是等腰三角形 1 等腰三角形的判定方法有下列几种 2 等腰三角形的判定与性质的区别是 3 小结 定义法 等角对等边 性质与判定互逆 本节课你学到了哪些知识 4 本节课用到的思想方法有 转化法 当堂检测 1 如图 C 36 DAB 36 B 72 则 1 度 2 度 图中等腰三角形有 2 AD交BC于点O AB CD OA OB 那么 ODC是等腰三角形吗 为什么 选做题 如图 线段AB的端点B在直线l上 AB与直线l不垂直 请在直线l上另找一点C 使 ABC为等腰三角形 这样的点有 个 B 作业 1 如图 在四边形 中 O在 D上且 1 2 求证 OB OC 2 O是 ABC中 ABC和 ACB的平分线的交点 OD AB交BC于D OE AC交BC于E点 若BC 10cm 求 ODE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 儿童除草活动方案
- 元宵佳节特价活动方案
- 元宵徒步行活动方案
- 元宵登山活动方案
- 元宵节服装秀活动方案
- 元宵节银行社区活动方案
- 元旦产品活动方案
- 元旦公司砸金蛋活动方案
- 元旦参与活动策划活动方案
- 元旦套餐酒吧活动方案
- 车间原辅材料消耗管理
- 2025年湖北省新高考信息卷(一)物理试题及答案
- 物联网环境下精准作物生长监测与预警系统-全面剖析
- 2025-2030深水采油树行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 高铁动车组运维成本分析-全面剖析
- 2025年中考语文作文文化传承主题作文高分模板(分步详解+例文示范)
- 2025届湖南省高考仿真模拟历史试卷01(解析版)
- 2025年新一代智慧应急管理平台建设项目可行性研究报告
- 广东省佛山市顺德区2023-2024学年五年级下学期语文期末试卷(含答案)
- 医院搬迁方案科室搬迁方案
- 供电营业班管理制度
评论
0/150
提交评论