高一数学 2.3 幂函数课件 新人教A版必修1.ppt_第1页
高一数学 2.3 幂函数课件 新人教A版必修1.ppt_第2页
高一数学 2.3 幂函数课件 新人教A版必修1.ppt_第3页
高一数学 2.3 幂函数课件 新人教A版必修1.ppt_第4页
高一数学 2.3 幂函数课件 新人教A版必修1.ppt_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学点一 学点二 学点三 学点四 学点五 1 一般地 函数y xa叫做 其中x是自变量 a是常数 2 幂函数y xa具有下面性质 1 所有的幂函数在区间上都有定义 并且函数图象都通过点 2 如果a 0 则幂函数的图象都通过点 并且在区间上是增函数 3 如果a 0 则幂函数在区间上是减函数 当x从右边趋向于时 图象在y轴右方无限地逼近 当x趋向于 时 图象在x轴上方无限地逼近轴 幂函数 0 1 1 0 0 0 0 y轴 y轴 x 3 在如图所示的幂函数图象中 幂函数 中 的取值范围分别为 4 要作出幂函数在其他象限的图象 可由函数在第一象限的形状及函数的作出 0 1 0 1 奇偶性 学点一幂函数的定义 已知函数y a2 3a 2 a为常数 1 当a为何值时 此函数为幂函数 2 当a为何值时 此函数为正比例函数 3 当a为何值时 此函数为反比例函数 分析 根据幂函数 正比例函数 反比例函数的定义可求 解析 1 由题意得a2 3a 2 1 即a2 3a 1 0 a 2 由题意得a2 5a 5 1a2 3a 2 0 3 由题意得a2 5a 5 1a2 3a 2 0 评析 正确理解幂函数与以往所学函数的关系 有利于温故知新 已知幂函数f x k z 为偶函数 且在区间 0 上是增函数 求函数f x 的解析式 由已知 0 即k2 2k 3 0 1 k 3 又 k z k 0 1 2 当k 0时 f x 不是偶函数 当k 1时 f x x2是偶函数 当k 2时 f x 不是偶函数 f x x2 学点二比较大小 比较下列各组数的大小 1 和 2 和 3 和 分析 依据幂函数的图象和性质比较大小 解析 1 函数y 3在 0 上为减函数 又3 3 1 所以 2 函数y 在 0 上为增函数 又因为 则 从而 3 函数y 在 0 上为减函数 又因为 所以 评析 比较大小题要综合考虑函数的性质 特别是单调性的应用 更要善于运用 搭桥法 进行分组 常数0和1是常用的参数 比较大小 1 2 与 3 a 1 与 其中a b 0 4 1 且 1 6 3 6 2 与实际上是幂函数y x在x 6 3与x 6 2的函数值 根据幂函数的性质知函数y x x 0 是增函数 即 6 3 6 2 6 3 6 2 学点三奇偶性的判定 分析 判定函数奇偶性应用函数奇偶性定义 判断下列函数的奇偶性 4 f x 的定义域为 x x 0 定义域不关于原点对称 f x 为非奇非偶函数 5 f x f x 的定义域为 0 f x 为非奇非偶函数 评析 一般先将函数式化成正指数幂或根式形式 确定定义域 再用定义判断奇偶性 也可通过图象特征来判断 1 y x 0 定义域 0 不关于原点对称 为非奇非偶函数 2 y x 0 定义域 0 不关于原点对称 为非奇非偶函数 3 y x r 满足f x f x f x 为r上的偶函数 学点四幂函数的单调性 证明 幂函数f x 在 0 上是增函数 分析 由函数单调性定义作出证明 证明 任取x1 x2 0 且x10 所以f x1 f x2 即幂函数f x x在 0 上是增函数 评析 在证明函数的单调性时 既可以用作差的方法 也可以用作商的方法 都可以证明函数f x x在 0 上是增函数 已知函数f x xm 且f 4 1 求m的值 2 判断f x 在 0 上的单调性 1 f 4 4m 72 即4m 4 m 1 f x x 2 任取x1 x2 0 且x10 x1x2 0 f x1 f x2 0 即函数f x 在 0 上单调递减 学点五幂函数的简单应用 1 已知 0 71 3 mx 求x的取值范围 分析 根据幂函数图象 单调性比较大小 解析 1 根据幂函数y x1 3的图象知当01时 y 1 1 30 7 1 于是有0 71 30时 随着x增大 函数值也增大 m 0 2 函数y x与y x的定义域都是r y x的图象分布在第一 二象限 y x的图象分布在第一 三象限 当x 0 时 x x 当x 0时 显然不合题意 当x 0 时 x 0 x 0 x 1 x 1 即x 1时 x x 综上所述 满足条件的x的取值范围为 x x1 评析 由幂函数不等式求变量范围 实质上仍是对图象与单调性的考查 已知幂函数y m n 的图象关于y轴对称 且在 0 上 函数值随x的增大而减小 求满足的a的取值范围 1 学习幂函数时 应注意什么问题 1 并不是任意的一次函数 二次函数都是幂函数 如y x 1 y x2 2x都不是幂函数 2 求幂函数的定义域时 可分四种情况 一是 为正整数 二是 为正分数 三是 为负整数 四是 为负分数 2 如何更好地掌握幂函数的图象与性质 要想更好地掌握幂函数的图象与性质 首先必须熟练地掌握幂函数在第一象限的图象与性质 其次掌握幂函数的奇偶性 这样幂函数的图象由对称性即可确定其完整图形 则其性质即可由图象得到 1 把握好幂函数定义的结构特点幂函数定义仍是结构定义 其特点是x 的系数为1 底数是自变量x的系数为1的单项式 2 幂函数定义域的求法幂函数的定义域随着 取值不同而不同 若遇到分数指数型幂函数 应先化为根式 再由根式性质求定义域 3 幂函数图象凸凹性 1 当 1时 在第一象限为下凹的 2 当0 1时 在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论