




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2019年六年级数学上册知识点归纳整理用数据表示位置的方法:先横着数,看在第几列,这个数就是数据中的第一个数;再竖着数,看在第几行,这个数就是数据中的第二个数。 (第几行,第几列)第二单元 分数乘法一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。2、分数乘分数是求一个数的几分之几是多少。(二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。注意 (1)分数的化简:分子、分母同时除以它们的最大公因数。(2)关于分数乘法的计算:可在乘的过程中约分,也可将积的分子分母约分。(3)当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。(三)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。一个数(0除外)乘小于1的数(0除外),积小于这个数。一个数(0除外)乘1,积等于这个数。(四)、分数混合运算的运算顺序和整数的运算顺序相同。(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。乘法交换律: ab=bd 乘法结合律: abc=a(bc)乘法分配律:a(b+c)=ab+ac 或a(b-c)=ab-ac二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、找单位“1”: “占”、“是”、“比”后面的量。2、求一个数的几倍是多少; 求一个数的几分之几是多少。用乘法三、倒数1、倒数的意义: 乘积是1的两个数互为倒数。(互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。)2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。(3)、求带分数的倒数:把带分数化为假分数,再求倒数。(4)、求小数的倒数: 把小数化为分数,再求倒数。3、1的倒数是1; 0没有倒数。4、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。 第三单元 分数除法一、分数除法1、分数除法的意义:分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。3、规律(分数除法比较大小时):(1)当除数大于1,商小于被除数;(2)当除数小于1(不等于0),商大于被除数;(3)当除数等于1,商等于被除数。4、分数混合运算顺序: (1)同级运算要按从左往右顺序计算。 (2)先算乘、除后算加、减,有括号的,要先算括号里面的(3)一个算式里,如果既有小括号,又有中括号,要先算小括号里面的, 再算中括号里面的。(4)能用运算律的要用运算律。二、分数除法解决问题(已知单位“1”的几分之几是多少,求单位“1”的量。 )用方程解应用题步骤:1、解。(写“解”字,打冒号。)找。(找等量关系)设。(设未知数,根据题目设未知数,问什么设什么。)列。(根据等量关系列方程)解。(解方程) 答。(写答数)2、求一个数是另一个数的几分之几:就 一个数另一个数3、求一个数比另一个数多(少)几分之几: 两个数的相差量单位“1”的量 三、比和比的应用(一)、比的意义1、比的意义:两个数相除又叫做两个数的比。2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。3、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。4、根据比与除法、分数的关系,可以理解比的后项不能为0。体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表两个数相除的关系。5、比和除法、分数的联系:比前 项比号“:”后 项比值除 法被除数除号“”除 数商分 数分 子分数线“”分 母分数值(二)、比的基本性质1、(1)商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。(2)分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。(3)比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。3、化简比的类型:4按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。 第四单元 圆一、认识圆形1、圆的定义:圆是由曲线围成的一种平面图形。2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。一般用字母O表示。它到圆上任意一点的距离都相等3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。 把圆规两脚分开,两脚之间的距离就是圆的半径。4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。直径是一个圆内最长的线段。5、圆心确定圆的位置,半径确定圆的大小。6、在同圆或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有直径都相等。7、在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的1/2。用字母表示为:d2r或rd/28、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的这条直线叫做对称轴。二、圆的周长1、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母C表示。2、圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。用字母表示。圆周率是一个无限不循环小数。在计算时,一般取 3.14。3、圆的周长公式:C= d d = C 或C=2 r r = C 2已知直径求周长:C=d 已知半径求周长:C=2r已知周长求直径:d=C 已知周长求半径:r=C2三、圆的面积1、圆的面积:圆所占平面的大小叫做圆的面积。 用字母S表示。2、圆面积公式的推导:把一个圆平均分成若干份,拼成一个近似的长方形,拼成的长方形的长就是圆周长的一半(r),拼成的长方形的宽就是圆的半径r,因为长方形的面积=长x宽,所以圆的面积:s=rxr=r已知半径求面积:S=r 已知直径求面积:S= (d2) 已知周长求面积:S=C23、环形的面积:一个环形,外圆的半径是R,内圆的半径是r。(Rr环的宽度))S环 = R 或 S环 = (R)。4、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小的倍数是这倍数的平方倍。5、两个圆:半径比 = 直径比 = 周长比;而面积比等于这些比的平方。6、确定起跑线:每相邻两个跑道相差的距离是: 2跑道的宽度7、常用各值结果:2 = 6.28 3 = 9.42 4 = 12.56 5 = 15.7 6 = 18.84 7 = 21.98 8 = 25.12 9 = 28.26 10 = 31.4 16 = 50.24 25 = 78.5 36 = 113.04 常用平方数结果=121 =144 =169 =196 =225 =256 =289 =324 =361第五单元:百分数一、概念:如18%、50%、64.2%-这样的数,叫做百分数。百分数表示一个数是另一个数的百分之几。百分数也叫做百分率后百分比。 1、百分数和分数的区别:百分数只能表示两个数的比的关系,而分数不仅可以表示数的关系,还可以表示成一个具体的量,可以带上单位名称。2、百分数和小数及分数的互化(1)小数化成百分数:把小数点向右移动两位再在数的后面加上百分号。(2)百分数化成小数:把百分号去掉,同时把小数点向左移动两位。(3)百分数化成分数:化成分母是100的分数,能约分的要约分。如果百分数分子是小数,要先根据分数的基本性质,把百分数改写成分数是整数的分数,再约分。(4)分数化成百分数有两种方法:一种是根据分数的基本性质,把分数的分母化成为100的分数,然后改写成百分数。另一种是先把分数化成小数,在利用小数化百分数的方法。(利用第二种时,除不尽,通常保留三位小数) 5、常用的分数、小数及百分数的互化=0.5=50% =0.25=25% =0.75=75% =0.2=20%=0.4=40% =0.6=60% =0.8=80% =0.125=12.5%=0.375=37.5% =0.625=62.5% =0.875=87.5% =0.1=10%=0.0625=6.25% =0.05=5% =0.04=4% =0.025=2.5%=0.02=2% =0.01=1%二:用百分数解决问题: 1、在生产工作中常用的百分率有:及格率=100% 增产率=100%合格率=100% 出勤率=100% 一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。2、解答百分数应用题时,要注意弄清楚谁和谁比,比的标准不同,单位“1”也不同,解题时要注意找准把谁看单位“1”。3、在实际生活中,人们常用“增加百分之几”、“减少百分之几”、“节约百分之几”-来表示增加、减少的幅度。(占谁的把谁看成单位“1”)4、税收主要分为消费税、增值税、营业税和个人所得税等几类。缴纳的税款叫做应纳税额,应纳税额与各种收入(销售额、营业额-)的比率叫做税率。5、在银行存款的方式有多种,如活期、整存整取、零存整取等。存入银行的钱叫做本金;取款时银行多付的钱叫做利息,利息与本金的比值叫做利率。6、国家规定,存款所得的利息要按5%的税率纳税,这个税叫利息税”。我们从银行取款时得到的利息都是税后利息。国债的利息不纳税。利息=本金利率时间7、成数、打折、利润、利息、税收应用题的解题公式:(1)含义:五成的含义是:收成是50%,二成五的含义是:收成是25% 八折的含义是:现价是原价的80%,或按原价的80%出售,或降了20%; 八五折的含义是:现价是原价的85%,或按原价的85%出售,或降了15%。(2)公式:现价 = 原价 折数(通常写成百分数形式) 利润 = 售价 - 成本应纳税额 = 需要交税的钱 税率利息 = 本金 利率 时间第六章:统计1、常用统计图:条形统计图、折线统计图、扇形统计图。2、用整个圆的面积表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数,这样的统计图我们称为扇形统计图。特点:通过扇形统计图我们可以很清楚地表示出各部分数量同总数之间的关系。3、条形统计图的的特点:条形统计图可以清楚地看出每个数量的多少。 折线统计图的特点:折线统计图不仅可以看出数量的多少而且可以看出数量的增减变化情况。第七单元:数学广角1、用表格方式解决有局限性,数目必须小,2、用假设法解决3、用代数方法解(用方程解)(1)审题,弄清题意(2)找等量关系(3)设未知数,根据题目设未知数,问什么设什么。)(4)根据等量关系列方(5)解方程) (6)(答)。附送:2019年六年级数学上册知识点教案教学设计学案(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。例如:7表示: 求7个的和是多少? 或表示:的7倍是多少?2、一个数乘分数的意义就是求一个数的几分之几是多少。 注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)例如:表示: 求的是多少?新 课 标 第 一 网9 表示: 求9的是多少?A 表示: 求a的是多少?(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。注:(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。ab=c,当b 1时,ca.一个数(0除外)乘小于1的数,积小于这个数。ab=c,当b 1时,c1时,ca (a0)除以小于1的数,商大于被除数:ab=c 当ba (a0 b0)除以等于1的数,商等于被除数:ab=c 当b=1时,c=a三、分数除法混合运算1、混合运算用梯等式计算,等号写在第一个数字的左下角。2、运算顺序:连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。加、减法为一级运算,乘、除法为二级运算。混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。注:(ab)c=acbc四、比:两个数相除也叫两个数的比1、比式中,比号()前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。注:连比如:3:4:5读作:3比4比52、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。例:1220=1220=0.6 1220读作:12比20后项比号后项前项前项比值注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。 比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。4、化简比:化简之后结果还是一个比,不是一个数。(1)、 用比的前项和后项同时除以它们的最大公约数。(2)、 两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。(3)、 两个小数的比,向右移动小数点的位置,也是先化成整数比。5、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。6、比和除法、分数的区别:除法被除数除号()除数(不能为0)商不变性质除法是一种运算分数分子分数线()分母(不能为0)分数的基本性质分数是一个数比前项比号()后项(不能为0)比的基本性质比表示两个数的关系附:商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。五、分数除法和比的应用1、已知单位“1”的量用乘法。例:甲是乙的,乙是25,求甲是多少?即:甲=乙(15=9)2、未知单位“1”的量用除法。例: 甲是乙的,甲是15,求乙是多少?即:甲=乙(15=25)(建议列方程答)3、分数应用题基本数量关系(把分数看成比)(1)甲是乙的几分之几? X k B 1 . c o m 甲乙几分之几 (例:甲是15的,求甲是多少?159)乙甲几分之几 (例:9是乙的,求乙是多少?915)几分之几甲乙 (例:9是15的几分之几?915)(“是”字相当“”号,乙是单位“1”)(2)甲比乙多(少)几分之几?A 差乙=(“比”字后面的量是单位“1”的量)(例:9比15少几分之几?(15-9)15)B 多几分之几是:1 (例: 15比9少几分之几?159-11)C 少几分之几是:1 (例:9比15少几分之几?1-91511) D 甲=乙差=乙乙=乙乙=乙(1) (例:甲比15少,求甲是多少?151515(1)9(多是“+”少是“”)E 乙=甲(1 ) 新- 课-标 -第 -一- 网(例:9比乙少,求乙是多少?9(1-)9 15)(多是“+”少是“”)(例:15比乙多,求乙是多少?15(1+)15 9)(多是“+”少是“”)4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。 例如:已知甲乙的和是56,甲、乙的比35,求甲、乙分别是多少? 方法一:56(3+5)7 甲:3721 乙:5735 方法二:甲:5621 乙:5635例如:已知甲是21,甲、乙的比35,求乙是多少?方法一:2137 乙:5735 方法二:甲乙的和:2156 乙:5635 方法三:甲乙 乙甲2135 5、画线段图:(1)找出单位“1”的量,先画出单位“1”,标出已知和未知。(2)分析数量关系。(3)找等量关系。(4)列方程。注:两个量的关系画两条线段图,部分和整体的关系画一条线段图。第四单元 圆一、.圆的特征1、圆是平面内封闭曲线围成的平面图形,.2、圆的特征:外形美观,易滚动。3、圆心o:圆中心的点叫做圆心圆心一般用字母O表示圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。直径d: 通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。同圆或等圆内直径是半径的2倍:d=2r 或 r=d2=d=4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。 同心圆:圆心重合、半径不等的两个圆叫做同心圆。5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。新- 课-标 -第 -一- 网有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角有二条对称轴的图形:长方形有三条对称轴的图形:等边三角形有四条对称轴的图形:正方形有无条对称轴的图形:圆,圆环6、画圆(1)圆规两脚间的距离是圆的半径。(2)画圆步骤:定半径、定圆心、旋转一周。二、圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母C表示。1、圆的周长总是直径的三倍多一些。2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母表示。 即:圆周率=周长直径3.14所以,圆的周长(c)=直径(d)圆周率() 周长公式: c=d, c=2r注:圆周率是一个无限不循环小数,3.14是近似值。3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。 如果r1r2r3=d1d2d3=c1c2c34、半圆周长=圆周长一半+直径=2r=r+d三、圆的面积s1、圆面积公式的推导如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。圆的半径 = 长方形的宽 圆的周长的一半 = 长方形的长 长方形面积 = 长 宽所以:圆的面积 = 长方形的面积 = 长 宽 = 圆的周长的一半(r)圆的半径(r) S圆 = r r S圆 = rr = r2 2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小。周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。3、圆面积的变化的规律:半径扩大多少倍直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。 如果: r1r2r3=d1d2d3=c1c2c3=234则:S1S2S3=49164、环形面积 = 大圆 小圆=r大2 - r小2=(r大2 - r小2) 扇形面积 = r2(n表示扇形圆心角的度数)新 课 标 第 一 网5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2跑道宽度。注:一个圆的半径增加a厘米,周长就增加2a厘米一个圆的直径增加b厘米,周长就增加b 厘米6、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是47、常用数据 =3.14 2=6.28 3=9.42 4=12.56 5=15.7第五单元、百分数一、百分数的意义:表示一个数是另一个数的百分之几。注:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比,所以,百分数又叫百分比或百分率,百分数不能带单位。 1、百分数和分数的区别和联系:(1)联系:都可以用来表示两个量的倍比关系。(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。 百分数的分子可以是小数,分数的分子只以是整数。注:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70、80%,出油率在30、40%。2、小数、分数、百分数之间的互化(1)百分数化小数:小数点向左移动两位,去掉“%”。(2)小数化百分数:小数点向右移动两位,添上“%”。(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。(5)小数 化 分数:把小数成分母是10、100、1000等的分数再化简。(6)分数 化 小数:分子除以分母。二、百分数应用题1、 求常见的百分率 如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几2、 求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。求甲比乙多百分之几 (甲-乙)乙求乙比甲少百分之几 (甲-乙)甲3、 求一个数的百分之几是多少 一个数(单位“1”) 百分率4、 已知一个数的百分之几是多少,求这个数 部分量百分率=一个数(单位“1”)5、 折扣 折扣、打折的意义:几折就是十分之几也就是百分之几十折扣成数几分之几百分之几小数通用八折八成十分之八百分之八十0.8八五折八成五十分之八点五百分之八十五0.85五折五成十分之五百分之五十0.5半价6、 纳税 缴纳的税款叫做应纳税额。 (应纳税额)(总收入)=(税率)X k B 1 . c o m (应纳税额)=(总收入)(税率)7、 利率(1)存入银行的钱叫做本金。 (2)取款时银行多支付的钱叫做利息。 (3)利息与本金的比值叫做利率。利息=本金利率时间税后利息=利息-利息的应纳税额=利息-利息5%注:国债和教育储蓄的利息不纳税8、百分数应用题型分类(1)求甲是乙的百分之几(甲乙)100% = 100% = 百分之几(2)求甲比乙多(少)百分之几100% = 100%例甲是50,乙是40,甲是乙的百分之几?(50是40的百分之几?)5040=125%甲是50,乙是40,乙是甲的百分之几?(40是50的百分之几?)4050=80%乙是40,甲是乙的125%,甲数是多少?(40的125
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生产酒瓶销售合同范本
- 承包荒山流转合同范本
- 嫁接果树售卖合同范本
- 社工站站长合同范本
- 餐饮加盟投资合同范本
- 单位汽车出租合同范本
- 深圳购房预售合同范本
- 租赁渔场合同范本
- 管道经销合同范本
- 物流报关合同范本
- 专题09 Module 5语法Grammar 特殊疑问句的用法-2021-2022学年七年级下册单元重难点易错题精练(外研版)
- 《工艺管理与改善》课件
- 《交通事故车辆及财物损失价格鉴证评估技术规范》
- 《广东省花生全程机械化栽培技术规程》
- 品管圈PDCA改善案例-降低住院患者跌倒发生率
- 外科微创手术管理制度
- 心理危机干预的伦理问题探讨-洞察分析
- 智慧校园医疗系列
- 《中小学校园食品安全和膳食经费管理工作指引》专题讲座
- 梨专题知识讲座
- GB/T 44601-2024信息技术服务服务生存周期过程
评论
0/150
提交评论