



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二轮复习专题 概率2 统计和概率【学习目标】1 会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法。2理解样本数据标准差的意义和作用,会计算数据标准差;能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释。3 会作两个有关联变量的数据的散点图,并利用散点图认识变量间的相关关系。4了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别。5理解古典概型及其概率计算公式,了解随机数的意义,能运用模拟方法估计概率。【学法指导】1. 先认真阅读教材和一轮复习笔记,处理好知识网络构建,构建知识体系,形成系统的认识;2.限时30分钟独立、规范完成探究部分,并总结规律方法;3.找出自己的疑惑和需要讨论的问题准备课上讨论质疑;【高考方向】1. 理解古典概型及其概率计算公式。2. 会计算一些随机事件所含的基本事件数及事件发生的概率。【课前预习】:一、知识网络构建1. 古典概型计算公式?二、高考真题再现甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球。先从甲罐中随机取出一球放入乙罐,分别以和表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以表示由乙罐取出的球是红球的事件,则下列结论中正确的是_(写出所有正确结论的编号)。; ; 事件与事件相互独立;是两两互斥的事件; 的值不能确定,因为它与中哪一个发生有关三、基本概念检测1.某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是( )(a)这种抽样方法是一种分层抽样(b)这种抽样方法是一种系统抽样(c)这五名男生成绩的方差大于这五名女生成绩的方差(d)该班级男生成绩的平均数小于该班女生成绩的平均数2.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( ) 甲的成绩的平均数小于乙的成绩的平均数 甲的成绩的中位数等于乙的成绩的中位数 甲的成绩的方差小于乙的成绩的方差 甲的成绩的极差小于乙的成绩的极差3.若随机变量xn(,2),则p(x)= .4、为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如图所示由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力在4.6到5.0之间的学生数为b,则a,b的值分别为()a0.27,78 b0.27,83 c2.7,78 d2.7,83【课中研讨】例1、某车间为了制定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如下:零件的个数x(个)2345加工的时间y(小时)2.5344.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程ybxa,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少小时?例2、为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下: 性别是否需要志愿者男女需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例(2)能否有99.5%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由例3、随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:分组频数频率25,3030.12(30,3550.20(35,4080.32(40,45n1f1(45,50n2f2(1)确定样本频率分布表中n1,n2,f1和f2的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35的概率例4、如图茎叶图记录了甲、乙两组各四名同学的植树棵数,乙组记录中有一个数据模糊,无法确认,在图中以x表示(1)如果x8,求乙组同学植树棵数的平均数和方差;(2)如果x9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率【课后巩固】1、下列说法:将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;设有一个回归方程y35x,变量x增加一个单位时,y平均增加5个单位;回归方程ybxa必过(,);有一个22列联表中,由计算得213.079,则有99%的把握确认这两个变量间有关系其中错误的个数是()a0 b1 c2 d32已知x与y之间的几组数据如下表:x123456y021334假设根据上表数据所得线性回归方程ybxa,若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为ybxa,则以下结论正确的是()abb,aa bbb,aa cba dbb,aa3某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:50,60),60,70),70,80),80,90),90,100分别加以统计,得到如图所示的频率分布直方图(1)从样本中日平均生产件数不足60件的工人中随机抽取2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 隧道消防施工方案(3篇)
- 辽宁到北京高考数学试卷
- 河湖整治合同范本
- 2025-2030中国聚丙烯膜行业运行态势及需求规模预测报告
- 2025-2030中国耳内接收器RITE辅助设备行业需求形势与投资前景预测报告
- 市场加盟协议合同范本
- 劳务雇佣协议合同范本
- 借款转实收资本协议
- 预制栏杆施工方案(3篇)
- 知名餐饮品牌合作合同
- 超超临界机组简介课件
- 《语言学教程》第 2 章 语音学与音位学1课件
- 大学辅导员常规学生工作清单一览表
- 奥维互动地图使用介绍课件
- 小学语文新课程标准最新版2022
- 疫情防控实战演练方案脚本
- 资产评估事务所投标服务方案总体工作方案评估工作关键性内容及重难点分析
- 思想道德与法治全册教案
- (高职)旅游景区服务与管理电子课件完整版PPT全书电子教案
- 拆卸与安装油箱加油管
- 某国有企业精细管理降本增效经验交流汇报材料企业降本增效.doc
评论
0/150
提交评论