如何设计才能充分利用LVDS的上风.doc_第1页
如何设计才能充分利用LVDS的上风.doc_第2页
如何设计才能充分利用LVDS的上风.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

如何设计才能充分利用LVDS的上风?低压差分信号(LVDS)是一种低压、差分信号传输方案,主要用于高速数据传输。根据 ANSI/TIA/EIA-644 规范中的定义,它是一种最为常见的差分接口。这种标准只对适合于 LVDS 应用的驱动器和接收机电气特性进行了规定。因此,它只是一种电气标准,常被一些更高级的协议标准当作其接口或物理层。在高速模拟数字转换器(ADC)中使用该传输方案可在保持转换器高性能的同时实现高速数据输出。独立 ADC 必须能够驱动以PCB走线形式存在的容性负载、以及接收电路的输进逻辑。此处,ADC 输出级的一个单端驱动器会导致大量瞬态开关噪声,这些噪声是由大电流晶体管的开和关造成的。这些瞬态会耦合回ADC的模拟前端,从而对其性能产生不利影响。然而,LVDS 驱动器级需要在一个始终开启的 3.5mA(典型值)电流源环境中运行(请参见图 1)。通过差分对导体以不同方向重新分配电流,便可形成总线上的逻辑 1 和 0。这种消除开关噪声和 EMI 的“始终开启”特性正是降低 ADC 性能的主要原因。图 1: LVDS 驱动器和接收器。(电流型驱动 差分接收器)由于专为点对点信号传输而设计,LVDS使用的是一种简单的端接方案。安装在接收器输进真个单个100欧姆电阻端接差分对,从而消除了反射。由于高阻抗接器输进,驱动器电流源的全部电流流经端接电阻,从而产生了一个 350 mV 额定值的低、差分总线电压。该电压在 1.2 V 共模电位左右摆动,其为典型驱动器输出失调电压(请参见图 2)。图 2:LVDS 总线电压电平。相比单端方案,差分信号传输还有另一个 LVDS 好处,由于它不易受到共模噪声的影响,并且产生更少的电磁干扰 (EMI)。由于接收器只响应差分电压,因此同邻近的信号线耦合的噪声被接收器视作共模调制,从而被拒尽接收。另外,由于两个差分对导体传导电流相等但极性相反,因此它们的磁场基本互相抵消,从而实现 EMI 最小化。根据数据速率的不同,标准 LVDS IC 可以驱动长达 10 米的间隔。然而,不应强制高性能ADC驱动这一间隔。取而代之的是,建议使用两英寸以内的较短的输出线,以防止邻近电路的噪声耦合到 ADC 输出端,由于其可能会反馈耦合至 ADC 模拟输进端。尽管低功耗、低 EMI 和高噪声抗扰度使得 LVDS 成为高速数据转换器的接口选择,但

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论