设计说明书.doc

江浦某学院行政楼设计【毕业设计论文计算说明书CAD图纸平面】

收藏

压缩包内文档预览:

资源预览需要最新版本的Flash Player支持。
您尚未安装或版本过低,建议您

江浦某学院行政楼设计【毕业设计论文计算说明书CAD图纸平面】,毕业设计论文计算说明书CAD图纸平面,江浦某,学院,行政,设计,毕业设计,论文,计算,说明书,CAD,图纸,平面
编号:48784714    类型:共享资源    大小:2.24MB    格式:ZIP    上传时间:2020-02-10 上传人:小*** IP属地:福建
50
积分
关 键 词:
毕业设计论文计算说明书CAD图纸平面 江浦某 学院 行政 设计 毕业设计 论文 计算 说明书 CAD 图纸 平面
资源描述:
江浦某学院行政楼设计【毕业设计论文计算说明书CAD图纸平面】,毕业设计论文计算说明书CAD图纸平面,江浦某,学院,行政,设计,毕业设计,论文,计算,说明书,CAD,图纸,平面
内容简介:
毕 业 设 计(论 文)任 务 书1本毕业设计(论文)课题应达到的目的:毕业设计是大学本科教育培养目标实现的重要阶段,是毕业前的综合学习阶段,是深化、拓宽、综合教和学的重要过程,是对大学期间所学专业知识的全面总结。 本毕业设计课题的目的是要求学生对所学的专业课程,如结构力学、钢筋混凝土结构设计原理、建筑结构抗震设计等进行综合运用,并学会查阅建筑抗震设计规范、混凝土结构设计规范、建筑结构荷载规范等规范。通过大学四年所学的基本理论、专业知识和基本技能进行建筑、结构设计。通过资料查阅、设计计算、论文撰写以及外文的翻译,加深了对新规范、规程、手册等相关内容的理解。巩固了专业知识、提高了综合分析、解决问题的能力。2本毕业设计(论文)课题任务的内容和要求(包括原始数据、技术要求、工作要求等):一、原始数据: 要求设计建筑面积3500左右,主体结构4-5层,建筑设计要求建筑物体型美观、新颖,满足各项使用功能要求,功能区组合合理;结构设计要求结构布置合理,构件设计经济合理。 1) 地质资料: 地下水位埋深0.901.10米。 地质报告: (1)素土:厚度1.402.00米,fk=80kPa。 (2)粉质粘土:底层埋深2.809.00米,厚度1.407.10米, fk=250 kPa。 (3)砂土:厚度8.00米,fk=300 kPa。 (4)冻土深度:0.5M. 2)气象资料: 屋面雪载标准值:0.35KN/,风压标准值:0.40KN/ 西北流主导,年最底气温零下7度,最高气温38度. 地震资料: 本区地震基本烈度为度,接近震考虑。 场地内无液化土层分布,场地土类型为中硬场地土, 场地类别为类。 3) 荷载资料: 办公室: 2.0KN/; 会议室: 2.0KN/; 档案室: 2.5KN/; 储藏室: 5.0KN/; 厕所: 2.0KN/; 陈列室: 3.5KN/; 屋面: 0.5KN/; 走廊楼梯: 2.5KN/; 二、技术要求和工作要求: (1)进行建筑方案设计,采用单线条作方案设计 建筑平面设计:主要解决建筑面积控制、楼梯位置、卫生间的设置、出入口的设置、内外墙体厚度、柱网尺寸、门窗洞口尺寸等。 建筑立面设计:注意正立面的处理,如形式与内容、统一与变化、均衡与稳定、虚实对比、尺度与比例、色彩与韵律等等。 建筑剖面设计:注意室内外高差、室内建筑层高、台阶的设置、窗下墙高度、门窗洞口高度、楼梯的分段、层面做法、排水方式、女儿墙高度、墙体与柱的关系、与建筑平面和立面的吻合等等。 (2)建筑施工图设计 在方案设计的基础上,进行建筑施工图设计。选定各部位的工程做法、门窗类别、细部尺寸等、完善建筑方案图,要求达到建筑设计工作图程度。 (3)建筑结构设计计算以建筑施工图为依据,确定结构平面布置、竖向布置方案; 初步确定结构构件尺寸及材料; 选定结构计算简图; 进行竖向荷载计算,地震作用计算; 完成选定框架的内力及内力组合; 进行楼盖和屋盖设计;结构构件设计; 楼梯设计;基础设计等。 (4)绘制出规定的结构施工图。 要求结构施工图严格按制图标准完成,要达到施工图的深度。毕 业 设 计(论 文)任 务 书3对本毕业设计(论文)课题成果的要求包括图表、实物等硬件要求:本毕业设计应完成的成果要求: (1) 建筑设计方案图(底层、标准层层平面、屋顶平面、立面图、剖面图)。 (2) 建筑施工图 1) 首层平面图、标准层平面图、顶层平面图各一张。比例1:100或1:200; 2)立面图:正立面图、侧立面图。比例1:100或1:200; 3) 剖面图:计算单元处的剖面、楼梯间处的剖面图。比例1:100; 4) 建筑详图:墙体大样图和有代表性的节点大样图; 5) 要选定各部位的工程做法。 (3) 结构施工图 1) 基础平面图及部分基础详图。比例1:100或1:200; 2) 楼盖结构平面布置与楼板配筋图。标准层、顶层各一张,比例1:100或1:200; 3) 指定计算框架的配筋图和模板图; 4) 所计算楼梯结构图。 (4)编制设计说明书 按照统一格式编制、装订设计说明书。要求书写工整、规范、清晰,内容齐全,并附有必要的简图。具体要求如下: 1) 建筑概况、用途及设计依据;建筑设计意图、建筑方案简要说明; 2) 有关结构设计的依据、资料等; 3) 结构方案选择的对比分析(包括主体结构、楼板结构、基础类型);4) 结构计算书; 5) 外文科技文献翻译; 6) 参考文献。4主要参考文献:1混凝土结构设计规范(GB50010-2010)S,中国建筑工业出版社,2010. 2建筑抗震设计规范(GBJ50011-2010)S(2008年局部修订),2010.3建筑地基基础设计规范(GB5007-2002)S,中国建筑工业出版社,2002. 4建筑结构荷载规范(GB50009-2001)S,中国建筑工业出版社,2006. 5民用建筑设计通则(GB50352-2005)S,中国建筑工业出版社,2005。 6建筑结构制图标准(GB/T50104-2001)S,中国建筑工业出版社,2001. 7韩欧主编,混凝土结构建筑标准规范资料速查系列手册M ,中国计划出版社,2010. 8黄东升、王艳晗、吴强、杨杰、李俊编著,建筑结构设计M,科学出版社,2010. 9沈蒲生主编,梁兴文副主编,混凝土结构设计(第4版)M,高等教育出版社,2010. 10沈蒲生主编,梁兴文副主编,混凝土结构设计(第4版)M,高等教育出版社,2010. 11阎兴华主编,李玉顺、王振、李亚娥副主编,混凝土结构设计M,科学出版社,2011. 12张玲、李军华编著,混凝土结构设计M,机械工业出版社,2011. 13李必瑜主编,房屋建筑学M,武汉理工大学出版社,2011. 14徐秀丽主编,混凝土框架结构设计M,中国建筑工业出版社,2012. 15李廉锟主编,结构力学M上下册,高等教育出版社,2008.毕 业 设 计(论 文)任 务 书5本毕业设计(论文)课题工作进度计划: 起 迄 日 期 工 作 内 容2016-01-132016-01-20 完成建筑方案初步设计2016-01-212016-02-03 完成建筑施工图2016-02-042016-02-17 完成结构平面布置及竖向布置2016-02-182016-03-15 完成荷载计算、地震作用计算 2016-03-162016-03-31 完成框架内力分析、最不利内力组合 2016-04-182016-04-25 完成构件截面设计、基础设计 2016-04-262016-05-01 绘制结构施工图、整理计算书 2016-05-022016-05-14 评阅、答辩所在专业审查意见:该毕业设计工作量符合本科毕业设计标准,任务书书写规范、完整,任务交代明确,同时毕业设计具体工作进度计划合理,符合学校、学院相关要求。经审核,该毕业设计任务书符合要求,审核通过。负责人: 2015年 12 月25日 译文题目: On the construction of knowledge 原文:On the construction of knowledgeAbstractIt is the role of the specification to detail the methods and criteria to be used in arriving at satisfactory member and connection sizes for the structural material in question, given the magnitudes that must be satisfied by the structure in order that it will have a response that allows it to achieve the performance that is needed.Key words: Loads on Building Structures Dead Load Live Load Partition Walling Solid Ground Floors Pitched RoofsIntroductionNormally, a design specification does not prescribe the magnitudes of the loads that are to be used as the basic input to the structural analysis, with the exception of special cases such as crane design specifications. It is the role of the specification to detail the methods and criteria to be used in arriving at satisfactory member and connection sizes for the structural material in question, given the magnitudes that must be satisfied by the structure in order that it will have a response that allows it to achieve the performance that is needed. Loads, on the other hand, are governed by the type of occupancy of the building, which in turn is dictated by the applicable local, regional, and national laws that are more commonly known as building codes.The building code loads have traditionally been given as nominal values, determined on the basis of material properties (e.g., dead load) or load surveys (e.g., live load and snow load). To be reasonably certain that the loads are not exceeded in a given structure, the code values have tended to be higher than the loads on a random structure at an arbitrary point in time. This may, in fact, be one of the reasons why excessive gravity loads are rarely the obvious cause of structural failures. Be that as it may, the fact of the matter is that all of the various types of structural loads exhibit random variations that are functions of time, and the manner of variation also depends on the type of load. Rather than dealing with nominal loads that appear to be deterministic in nature, a realistic design procedure should take load variability into account along with that of the strength, in order that adequate structural safety can be achieved through rational means.Since the random variation of the loads is a function of time as well as a number of other factors, the modeling, strictly speaking, should take this into account by using stochastic analyses to reflect the time and space interdependence. Many studies have dealt with this highly complex phenomenon, especially as it pertains to live load in building. In practice, however, the use of time-dependent loads is cumbersome at best, although the relationship must be accounted for in certain cases (i.e., seismic action).For most design situations the code will specify the magnitude o.g. the loads as if they were static. Their time and space variation are covered through the use of the maximum load occurring over a certain reference (return) period, and its statistics. For example, American live load criteria are based on a reference period of 50 years, while Canadian criteria use a 30 year interval.The geographical location of the structure plays an important role for certain loads. , the first being of special importance in north-central and north-eastern areas of the Unite States, the second in high wind coastal and mountain areas, and the last in areas having earthquake fault lines.Design for wind effects is complicated by a number of phenomena. Like snow loads and earthquake action, wind loads are given more attention in certain parts of the country. At the same time wind loads are neither static nor uniformly varying, and are heavily influenced by the geometry of the structure as well as the surrounding structures and the landscape. To a certain degree this also applies to the magnitude of the snow load. Building codes treat these effects as static phenomena and relate them to the actual conditions through semi empirical equations. This gives the designer a better handle on a difficult problem, but can lead to difficulties when the real structure departs significantly from the bases of the code. For that basis of model tests. In particular, wind tunnel testing has become a useful and practical tool in these endeavors.The loads on the structure are normally assumed to be independent of the type of structure and structure material, with the exception of dead loads. The response of a building, however, will be different for different materials, depending on the type of load. For example, the behavior of a moment-resistant steel frame will be quite unlike that of a braced frame, when subjected to lateral loads, especially those due to an earthquake. On the other hand, the response of these two frames to gravity loads will not be all that different.The size of a structure (height, floor area) has a significant impact on the magnitudes of most loads. All loads are influenced by the increasing height of a multistory building, for example. Similarly, the greater the floor area that is to be supported by a single member, the smaller will be the probability that the code live load will appear with its full intensity over the entire area. In such cases a live load reduction method is used to arrive at more realistic design data.Loads on Building StructuresThere are many types of loads that may act on a building structure at one time or other, and this section provides a general description of the characteristics of the most important ones.The following loads are of primary concern to a building designer:Gravity loads: Dead load; Live load; Snow load;Lateral loads: Wind load; Seismic action; Special loads and load effects Special loads and load effects include the influence of temperature variations, structural foundation settlements, impact, and blast. They are given only a brief description here; the reader in treated in the details is advised to seek out the specialized publications that deal with this type of loading.Each of the primary types of loads can be divided into several subtypes.Dead LoadIn theory, at least, the dead load on a structure is supposed to remain constant. In reality, the word constant is a relative measure, because the dead load includes not only the self-weight of the structure, but also the weight of permanent construction materials, partitions, floor and ceiling materials, machinery and other equipment, and so on. Also included in this category are the load effects of prestressing forces.The weight of all of these elements can be determined exactly only by actually weighting and/or measuring the pieces. This is almost always an impractical solution, and the designer will therefore rely on publish material data to arrive at the dead loads. Some variation consequently will occur in the real structure, accounting for some of the deviation from constancy. Similarly, there are bound to be differences between otherwise identical structures, representing the major source of dead load variability. However, compared to the other structural loads, the dead load variations are relatively small, and the actual mean values are quite close to the code-prescribed data.Live LoadLive load, or more accurately the gravity lifelong, is the name that is commonly used for the loads on the structure that are not part of the permanent installations. To that end it includes the weight of the occupants of the building, furniture and movable equipment, and so on. The fluctuations in this load are bound to be substantial. From being essentially zero immediately before the tenants take possession to a maximum value that may be several times as high as the dead load, the magnitude of the live load at any given time may be quite different from that specified by the building code. This is one of the reasons why numerous attempts have been made to model the live load and its variations, and why live load measurements in actual building continue to be made.The live load on the structure at any given time is also called the arbitrary point-in-time live load. As shown by fig.5.1, this is the load that is determined in a live load survey. Part of the total load may now be directly attributable to the occupants of the structure: as soon as the room is emptied, the transient live load (TLL) is reduced to zero or near zero. The load that remains, say, due to furniture and the like, is a sustained live load(SLL)that changes very little as long as the same tenant occupies. Significant variations in the SLL may come about when the occupancy changes; as one company moves out, the SLL may drop to near zero. It will remain at this level until the next tenant moves in, at which time it will increase to a level that may be quite different from the SLL of the earlier occupant.As demonstrated later, live loads in general are a function of the size of the floor area under consideration. The larger the area, the smaller is the chance that the full code load will appear over the entire area. This affects the magnitude of the arbitrary point-in-time loads as well as the maximum lifetime live load, which represents the maximum live load that the structure may experience in its lifetime. In American practice the life of a structure is expected to be 50 years; hence, a 50-year reference period forms the basis for many of the live load models that have been developed.The live load on the structure at any time is normally well below the code value; the maximum lifetime(50-year) live load may be a certain amount larger. Current load statistics and code recommendations take these phenomena into account.Partition WallingPartitions, as they are normally called, are internal walls built of the same materials as the other types of walling previously described. When they are used simply as dividing walls and have only their own weight to carry, they are termed non load-bearing partitions. When, however, they are required to support the weight of the structure above, then they are termed” load-bearing partitions”.Non load-bearing partitions are often built of lightweight materials, such as thin lightweight precast concrete blocks, hollow clay blocks and timber studding covered with either plasterboard, fiberboard, match boarding, plywood, chipboard, resin bonded blackboard or other form of cladding. Fif.4 shows the construction of a stud partition as used in a typical Canadian timber framed house. Where sound insulation is of the utmost importance, as in ordinary houses, even “non load-bearing” partitions should be built of bricks or dense precast concrete blocks. Partitions of lightweight precast concrete blocks and hollow clay blocks have fire-resisting qualities and contribute thermal insulation. They are, therefore, widely used.Stud partitions, although commonly used in former years, are not so common nowadays, due mainly to their low resistance against fire. On the other hand, they contribute quite a great deal to thermal insulation.Special partitions, for use in toilets etc, are often made of pressed steel, plastics, asbestos cement, tiles or glass. These are normally prefabricated and erected in sections and can be easily removed or re-arranged.Solid Ground FloorsSolid ground floors are nearly always of concrete laid on hardcore beds and are reinforced with mesh reinforcement, if the floors are to carry heavy loads. In most cases a waterproof membrane, such as a layer of asphalt, several coats of a tar or bitumen substance, or polythene sheeting is laid under the floor to prevent dampness rising through the concrete from the ground below.Pitched RoofsIn the design of pitched roofs, one of the most important factors is the degree of the pitch or slope, which depends mainly on the material used to cover the roofs. The steeper the pitch, the more effective roof area and a higher cost. The roof space, commonly known as a loft, which is quite large in a roof with a steep pitch, is often used to provide additional rooms or a storage area.中文译文:建筑的知识文摘它的作用是详细介绍了该方法和标准的规范,用于到达令人满意的结构材料的理想部件和连接尺寸,考虑到大小必须满足的结构的顺序,以便它会有反应,使其达到所需的性能。 关键字:建筑结构荷载、静载、活载、隔断墙体、坚实的地面、斜屋顶介绍通常,设计规范没有规定荷载的大小作为结构分析的基本输入,除特殊情况,如起重机设计规范。它的作用是对细节的规范和标准的方法用于到达满意的成员和连接结构材料的尺寸问题,考虑到大小必须满足的结构,以便它会有反应,使其达到所需的性能。荷载,另一方面,由居住建筑的类型控制,这反过来取决于本地、地区和国家法律通常被称为建筑规范。建筑规范荷载一贯被赋予表面涵义,在确定材料特性的基础上(例如,静载)或荷载调查(例如,活载和雪荷载)。合理确定荷载不超过一个给定结构的最大承受荷载、随机结构在任意时间点上的测定值往往高于荷载,事实上,这可能由于过度的重力负载是较少引起结构故障的明显原因之一。话虽如此,但问题的事实是,所有各种类型的结构荷载根据时间的变化而表现出随机变化,而变化的方式还取决于荷载的类型。而不处理额定荷载似乎是自然界的确定性,一个现实的设计过程应考虑荷载变化的强度,可通过合理手段充分实现结构的安全性。由于荷载的随机变化是由于时间的因素以及其他一些因素,严格来说,建模时应该考虑到了这一点,使用随机分析反映时间和空间的相互依存。许多研究已经处理了这种高度复杂的现象,特别是当它涉及到建筑物活荷载时。然而在实践中,时变荷载的使用是相当繁琐,虽然在某些情况下联系必定存在(例如,地震作用),在大多数设计情况下,规范规定o.g.荷载的大小是静态的。他们的时间和空间变化是通过使用最大荷载发生在一定的参考(返回),时间数据统计。例如,美国活载标准是的50年基准期,而加拿大的标准用30年的时间间隔。结构地理位置在一定荷载下起着重要的作用。它是特别适用于雪,风,和地震作用,第一个是特别重要的在美国中北部和东北地区,第二个是在沿海大风和山区,最后一个地区是地震断层线。风的影响设计是一些复杂的现象。如雪荷载和地震作用,风荷载是在某些地区应该给予更多的关注。同时风载既不静也不均匀变化,并受到的几何结构以及周围的结构和格局严重影响。在某种程度上这也适用于雪荷载的大小。建筑规范把这些效应看作是静态现象,并把他们与实际情况偏离通过半经验方程联系起来。这让设计师有一个更好地处理困难的问题,但当真正导致困难的是结构明显离开基础规范。模型试验基础。特别是,风洞测试在这些努力下已经成为一个有用的实用工具。结构上的载荷通常被认为是独立的结构类型和结构材料,除了静载。建筑的反应 ,对于不同的材料会有不同的反应,这取决于荷载的类型。例如,抗弯钢框架的行为与斜撑框架不同,受到横向荷载时,特别是
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:江浦某学院行政楼设计【毕业设计论文计算说明书CAD图纸平面】
链接地址:https://www.renrendoc.com/p-48784714.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!