数学选修1-1答案.doc_第1页
数学选修1-1答案.doc_第2页
数学选修1-1答案.doc_第3页
数学选修1-1答案.doc_第4页
数学选修1-1答案.doc_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

易思维教育 学习就这么简单(数学选修1-1) 第一章 常用逻辑用语 基础训练A组一、选择题1B 可以判断真假的陈述句2D 原命题是真命题,所以逆否命题也为真命题3A ,仅仅是充分条件 ,仅仅是充分条件;,仅仅是充分条件4D 否命题和逆命题是互为逆否命题,有着一致的真假性5A ,充分,反之不行6A , ,充分不必要条件二、填空题1若至少有一个为零,则为零2充分条件 3必要条件;充分条件;充分条件,4 恒成立,当时,成立;当时, 得;5必要条件 左到右来看:“过不去”,但是“回得来”三、解答题1解:(1) ;真,假; (2) 每一个素数都不是偶数;真,假;(3) 存在一个正整数不是质数且不是合数;假,真;(4) 存在一个三角形有两个以上的外接圆或没有外接圆。2解: 而,即。3证明:假设都是奇数,则都是奇数得为偶数,而为奇数,即,与矛盾所以假设不成立,原命题成立4证明:恒成立 (数学选修1-1) 第一章 常用逻辑用语 综合训练B组一、选择题1B “”为假,则为真,而(且)为假,得为假2B 属于无理数指数幂,结果是个实数;和都是无理数;3C 若 , 则互为相反数,为真命题,则逆否命题也为真;“全等三角形的面积相等”的否命题为“不全等三角形的面积不相等相等” 为假命题;若 即,则有实根,为真命题4A ,“过得去”;但是“回不来”,即充分条件5D 的否定为至少有一个不为6D 当时,都满足选项,但是不能得出 当时,都满足选项,但是不能得出二、填空题1, ,应该得出2充要,充要,必要 3若,则不都是锐角 条件和结论都否定4必要 从到,过不去,回得来5 和都是假命题,则三、解答题1解:(1)为假命题,反例: (2)为假命题,反例:不成立 (3)为真命题,因为无实数根 (4)为假命题,因为每个三角形都有唯一的外接圆。 2解:非为假命题,则为真命题;为假命题,则为假命题,即 ,得 3解:令,方程有两个大于的实数根即所以其充要条件为4解:假设三个方程:都没有实数根,则 ,即 ,得 。 (数学选修1-1) 第一章 常用逻辑用语 提高训练C组一、选择题1C 中有“且”;中没有;中有“非”; 中有“或”2A 因为原命题若,则 中至少有一个不小于的逆否命题为,若都小于,则显然为真,所以原命题为真;原命题若,则 中至少有一个不小于的逆命题为,若 中至少有一个不小于,则,是假命题,反例为3B 当时,所以“过不去”;但是在中,即“回得来”4B 一次函数的图象同时经过第一、三、四象限,但是不能推导回来5A “,或”不能推出“”,反之可以6D 当时,从不能推出,所以假,显然为真二、填空题1若的两个内角相等,则它是等腰三角形2既不充分也不必要,必要 若,不能推出的反例为若,的证明可以通过证明其逆否命题3, “”可以推出“函数的最小正周期为”但是函数的最小正周期为,即 “”不能推出“直线与直线相互垂直”反之垂直推出; 函数的最小值为令4充要 5 三、解答题1解(1)存在一个正方形的四边不相等;(2)平方和为的两个实数不都为;(3)若是锐角三角形, 则的某个内角不是锐角。(4)若,则中都不为;(5)若。2解:是的必要非充分条件,即。3证明:假设都大于,即,而得即,属于自相矛盾,所以假设不成立,原命题成立。4解:“或”为真命题,则为真命题,或为真命题,或和都是真命题当为真命题时,则,得; 当为真命题时,则当和都是真命题时,得(数学选修1-1) 第二章 圆锥曲线 基础训练A组一、选择题1D 点到椭圆的两个焦点的距离之和为2C 得,或3D ,在线段的延长线上4C 5B ,而焦点到准线的距离是6C 点到其焦点的距离等于点到其准线的距离,得二、填空题1 当时,;当时,2 设双曲线的方程为,焦距 当时,; 当时,3 4 5 焦点在轴上,则三、解答题1解:由,得,即 当,即时,直线和曲线有两个公共点; 当,即时,直线和曲线有一个公共点; 当,即时,直线和曲线没有公共点。2解:设点,距离为, 当时,取得最小值,此时为所求的点。3解:由共同的焦点,可设椭圆方程为;双曲线方程为,点在椭圆上,双曲线的过点的渐近线为,即所以椭圆方程为;双曲线方程为4解:设点,令,对称轴当时,;当时, (数学选修1-1) 第二章 圆锥曲线 综合训练B组一、选择题1D 焦点在轴上,则2C 当顶点为时,; 当顶点为时,3C 是等腰直角三角形,4C 5D 圆心为,设; 设6C 垂直于对称轴的通径时最短,即当二、填空题1 当时,;当时,2 焦点在轴上,则3 中点坐标为4 设,由得 恒成立,则5 渐近线方程为,得,且焦点在轴上6 设,则中点,得,得即三、解答题1解:显然椭圆的,记点到右准线的距离为则,即当同时在垂直于右准线的一条直线上时,取得最小值,此时,代入到得而点在第一象限,2解:当时,曲线为焦点在轴的双曲线;当时,曲线为两条平行的垂直于轴的直线;当时,曲线为焦点在轴的椭圆;当时,曲线为一个圆;当时,曲线为焦点在轴的椭圆。3解:椭圆的焦点为,设双曲线方程为过点,则,得,而,双曲线方程为。4解:设抛物线的方程为,则消去得,则(数学选修1-1) 第二章 圆锥曲线 提高训练C组一、选择题1B 点到准线的距离即点到焦点的距离,得,过点所作的高也是中线 ,代入到得,2D ,相减得 3D 可以看做是点到准线的距离,当点运动到和点一样高时,取得最小值,即,代入得4A 且焦点在轴上,可设双曲线方程为过点 得5D 有两个不同的正根 则得6A ,且 在直线上,即 二、填空题1 可以证明且而,则即2 渐近线为,其中一条与与直线垂直,得 3 得,当时,有两个相等的实数根,不合题意当时,4 当时,显然符合条件;当时,则5 直线为,设抛物线上的点 三、解答题1解:当时,曲线为一个单位圆;当时,曲线为焦点在轴上的椭圆;当时,曲线为两条平行的垂直于轴的直线;当时,曲线为焦点在轴上的双曲线;当时,曲线为焦点在轴上的等轴双曲线。2解:双曲线的不妨设,则,而得3证明:设,则中点,得得即,的垂直平分线的斜率的垂直平分线方程为当时,而,4解:设,的中点,而相减得即,而在椭圆内部,则即。新课程高中数学训练题组参考答案(咨(数学选修1-1)第一章 导数及其应用 基础训练A组一、选择题1B 2C 3C 对于任何实数都恒成立4D 5D 对于不能推出在取极值,反之成立6D 得而端点的函数值,得二、填空题1 2 3 4 5 三、解答题1解:设切点为,函数的导数为切线的斜率,得,代入到得,即,。2解: 3解:, 当得,或,或, ,列表: +又;右端点处;函数在区间上的最大值为,最小值为。 4解:(1)当时,即(2),令,得(数学选修1-1)第一章 导数及其应用 综合训练B组一、选择题1C ,当时,;当时, 当时,;取不到,无极小值2D 3C 设切点为,把,代入到得;把,代入到得,所以和4B ,的常数项可以任意5C 令6A 令,当时,;当时,在定义域内只有一个极值,所以二、填空题1 ,比较处的函数值,得2 3 4 恒成立,则5 ,当时,不是极值点三、解答题1解: 。2解:设小正方形的边长为厘米,则盒子底面长为,宽为 ,(舍去) ,在定义域内仅有一个极大值, 3解:(1)的图象经过点,则,切点为,则的图象经过点得(2)单调递增区间为4解:由得所以增区间为;减区间为。(数学选修1-1)第一章 导数及其应用 提高训练C组一、选择题1A 2A 对称轴,直线过第一、三、四象限3B 在恒成立,4C 当时,函数在上是增函数;当时,在上是减函数,故当时取得最小值,即有得5A 与直线垂直的直线为,即在某一点的导数为,而,所以在处导数为,此点的切线为6A 极小值点应有先减后增的特点,即二、填空题1 ,时取极小值2 对于任何实数都成立3 要使为奇函数,需且仅需,即:。又,所以只能取,从而。4 时,5 ,令,求出切线与轴交点的纵坐标为,所以,则数列的前项和三、解答题1解:。2解:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论