




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.3.1 二项式定理教学案2【教学目标】1.理解二项式定理及推导方法,识记二项展开式的有关特征,能对二项式定理进行简单应用;2.通过对二项式定理内容的研究,体验特殊到一般的发现规律,一般到特殊指导实践的认识事物过程。【教学重难点】教学重点:二项式定理的内容及归纳过程 ;教学难点:在二项式展开的过程中,发现各项及各项系数的规律。【教学过程】一、设置情景,引入课题引入:二项式定理研究的是(a+b)n的展开式。如(a+b)2=a2+2ab+b2, (a+b)3=?,(a+b)4=?,那么(a+b)n的展开式是什么呢?二、引导探究,发现规律1、多项式乘法的再认识问题1:(a1+ b1)(a2+b2) (a3+ b3)展开式中每一项是怎样构成的?展开式有几项? 2、(a+b)3展开式的再认识 问题2:将上式中,若令a1=a2=a3=a, b1=b2= b3=b,则展开式又是什么?合作探究1:合并同类项后,为什么a2b的系数是3?教师引导:可以发现a2b是从(a+b)(a+b)(a+b)这三个括号中的任意两个中选a,剩下的一个括号中选b;利用组合知识可以得到a2b应该出现了C C=3次,所以a2b的系数是3。问题3:(a+b)4的展开式又是什么呢?可以对(a+b)4按a或按b进行分类:(1)四个括号中全都取a,得:C a4(2)四个括号中有3个取a,剩下的1个取b,得:C a3 Cb(3)四个括号中有2个取a,剩下的2个取b,得:C a2 Cb2(4)四个括号中有1个取a,剩下的3个取b,得:C a Cb3(5)四个括号中全都取b,得:C b4小结:对于展开式,只要按一个字母分类就可以了,可以按a分类,也可以按b分类,再如:(1)不取b:C a4;(2)取1个b:C a3b;(3)取2个b:C a2 b2;(4)取3个b:C ab3;(5)取4个b:C b4,然后将上面各式相加得到展开式。结论:(a+b)4= C a4+ C a3b+ C a2 b2+ C ab3+ Cb4三、形成定理,说理证明问题4:(a+b)n的展开式又是什么呢?合作探究2: (1) 将(a+b)n展开有多少项?(2)每一项中,字母a,b的指数有什么特点?(3)字母“a”、“b”指数的含义是什么?是怎么得到的?(4)如何确定“a”、“b”的系数?猜想:证明:对(a+b)n分类,按b可以分n+1类,(1)不取b:C an;(2)取1个b:C an-1b;(3)取2个b:C an-2b2;(k+1)取k个b:C an-kbk;(n+1)取n个b:C bn;然后将这n+1个式子加起来,就得到二项展开式,(a+b)n=an+an-1b+an-kbk+bn(nN+)这就是二项式定理。四、熟悉定理,简单应用二项式定理的公式特征(由学生归纳,让学生熟悉公式)(1)项数:共有n+1项;(2)次数:字母a按降幂排列,次数由n递减到0;字母b按升幂排列,次数由0递增到n;(3)二项式系数:下标为n,上标由0递增至n;(4)通项:Tk+1= C an-kbk;指的是第k+1项,该项的二项式系数为C;(5)公式所表示的定理叫二项式定理,右边的多项式叫做(ab)n的二项展开式。例1 求的展开式分析:为了方便,可以先化简后展开。例2 的展开式的第4项的系数及第4项的二项式系数。求的展开式中含的系数。五、当堂检测 1.写出(p+q)7的展开式;2.求(2a+3b)6的展开式的第3项;3.写出的展开式的第r+1项;4.(x-1)10的展开式的第6项的系数是( )(A) (B) (C) (D) 答案:1.(p+q)7=p7+7p6q+21p5q2+35p4q3+35p3q4+21p2q5+7pq6+q7.六、课堂小结1. 公式: 2. 思想方法:(1)从特殊到一般的思维方式. (2)用计数原理分析二项式的展开过程.七、布置作业课本43页习题1.3 A组 2、31.3.1 二项式定理课前预习学案一、预习目标通过分析(a+b)2的展开式,归纳得出二项式定理;掌握二项式定理的公式特征并能简单应用。二、预习内容1、(a+b)2= (a1+ b1)(a2+b2) (a3+ b3)=_ (a+b)3= (a+b)4= 2、二项式定理的证明过程3、(a+b)n= 4、(a+b)n的二项展开式中共有_项,其中各项的系数_叫做二项式系数,式中的_叫做二项展开式的通项,用Tk+1表示,即通项为展开式的第k+1项:_5、在二项式定理中,若a=1,b=x,则有(1+x)n=_三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案一、学习目标1.用计数原理分析(a+b)3的展开式,进而探究(a+b)4的展开式,从而猜想二项式定理。2.熟悉二项式定理中的公式特征,能够应用它解决简单问题。3. 培养学生观察、分析、概括的能力。二、学习重难点:教学重点:二项式定理的内容及应用教学难点:二项式定理的推导过程及内涵三、学习过程(一)探究(a+b)3、(a+b)4的展开式问题1:(a1+ b1)(a2+b2) (a3+ b3)展开式中每一项是怎样构成的?展开式有几项?问题2:将上式中,若令a1=a2=a3=a, b1=b2= b3=b,则展开式又是什么?合作探究一:合并同类项后,为什么a2b的系数是3?问题3:(a+b)4的展开式又是什么呢?结论:(a+b)4= C a4+ C a3b+ C a2 b2+ C ab3+ Cb4(二)猜想、证明“二项式定理”问题4:(a+b)n的展开式又是什么呢?合作探究二: (1) 将(a+b)n展开有多少项?(2)每一项中,字母a,b的指数有什么特点?(3)字母“a”、“b”指数的含义是什么?是怎么得到的?(4)如何确定“a”、“b”的系数?二项式定理:(a+b)n=an+an-1b+an-kbk+bn(nN+)(三)归纳小结:二项式定理的公式特征(1)项数:_;(2)次数:字母a按降幂排列,次数由_递减到_;字母b按升幂排列,次数由_递增到_;(3)二项式系数:下标为_,上标由_递增至_;(4)通项:Tk+1=_;指的是第k+1项,该项的二项式系数为_;(5)公式所表示的定理叫_,右边的多项式叫做(ab)n的二项展开式。(四)典型例题例1 求的展开式分析:为了方便,可以先化简后展开。例2 的展开式的第4项的系数及第4项的二项式系数。求的展开式中含的系数。(五)当堂检测1.写出(p+q)7的展开式;2.求(2a+3b)6的展开式的第3项;3.写出的展开式的第r+1项;4.(x-1)10的展开式的第6项的系数是( )(A) (B) (C) (D) 课后练习与提高1在的展开式中,的系数为( ) A B C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年卷筒纸行业研究报告及未来行业发展趋势预测
- 工程项目成本控制计划
- 幼儿园消防演练应急逃生简报范文
- 2025年钼合金制品行业规模分析及投资前景研究报告
- 试验检测员基础知识考试试题(含答案)
- 2025年合结钢行业研究报告及未来行业发展趋势预测
- 2025年运动球服行业研究报告及未来行业发展趋势预测
- 2025年居家鞋行业研究报告及未来行业发展趋势预测
- 2025年拍立得配件及周边行业研究报告及未来行业发展趋势预测
- 2025年便利店零售行业研究报告及未来行业发展趋势预测
- 钢制压力管道防腐层厚度检测新技术
- 高中化学必修二1.2《物质结构-元素周期律》
- 湖南美术出版社二年级美术上册学期教学计划
- 2025年上海市中考语文试题含解析
- 化工厂产品品质管理制度
- 2024-2030年中国钢纤维混凝土行业市场全景分析及投资前景展望报告
- 2025年黑龙江、吉林、辽宁、内蒙古高考物理真题(解析版)
- 教堂12项管理制度
- 2025年普通高等学校招生全国统一考试数学1卷(答案版)
- 《汽车线控底盘装调与检修》课件全套劳动任务1-16线控加速系统踏板装调与检修-线控底盘参数调节与综合测试
- 踝关节骨折护理
评论
0/150
提交评论