超短基线水声定位系统.ppt_第1页
超短基线水声定位系统.ppt_第2页
超短基线水声定位系统.ppt_第3页
超短基线水声定位系统.ppt_第4页
超短基线水声定位系统.ppt_第5页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2020 2 11 1 水下定位与导航技术 第三章超短基线水声定位系统 2 3 1引言 组成结构 发射换能器和几个水听器可以组成一个直径只有几厘米 几十厘米的水听器基阵 称为声头 声头可以安装在船体的底部 也可以悬挂于小型水面船的一侧 超短基线系统定位解算方式非同步信标方式应答器方式响应器方式带有深度的应答器 响应器方式 3 超短基线系统的几种定位解算方式 测量声线入射角 a 信标方式 距离和角度 b 应答器方式 单程距离和角度 c 响应器方式 d 有深度的应答器 响应器方式 一类是根据声线入射角和已知深度进行位置解算另一类则是根据测量的距离和声线入射角进行定位解算 已知 将测得的斜距 入射角与深度组合 从而提高定位精度 4 3 2入射角和深度方式 非同步信标信标方式 位置解算 结构及定位解算图 3个水听器摆成L型 位置解算 信标位置 Xa Ta Za 3个水听器按L型布置 间距为d d 5 3 2入射角和深度方式 非同步信标信标方式 位置解算 R与信标的坐标Xa Ya及深度的关系为 而 从而解得 mx my是通过相位差测量而得到的 6 3 2入射角和深度方式 非同步信标信标方式 位置解算 因此有 两个水听器接收信号的相位差 与信号入射角 m的关系为 由于基阵尺寸甚小 可认为是远场接收的情况 即入射到所有基元的声线平行 7 3 2入射角和深度方式 非同步信标信标方式 位置解算 算法小结 先测得两换能器接收信号的相位差 然后利用公式解算信标在船坐标系下的位置坐标 8 3 2入射角和深度方式 非同步信标信标方式 位置解算 r 在某些场合 要求目标的坐标 要以水平距离和水平面内的目标方位角给出 在水平面内以极坐标形式给出 9 3 3入射角与距离算法 应答器或响应器方式 目标斜距若使用应答器代替信标通过相位测量得到角度 直接求出位置坐标应答器深度 若使用响应器 10 3 4超短基线定位系统定位误差分析 一般 误差以水平位置误差与斜距之比度量 相对误差 误差分析的目的 分析应答器在基阵坐标系下的位置解算误差 即求 Xa Ya Za分别为多少 分析方法 11 3 4超短基线定位系统定位误差分析 Xa Ya Za的求解公式以X的定位误差为例 对Xa求全微分有 12 3 4超短基线定位系统定位误差分析 位置测量的相对误差表示式位置相对定位精度斜距R和 的相对误差 由和有代入上式可得以水平位置精度与斜距之比来衡量定位精度时有斜距相对定位精度 13 3 4超短基线定位系统定位误差分析 在各项误差认为互相独立的情况下 相对于斜距的位置均方误差记为 即类似地 可得到结论 信标或应答器在基阵的下方时 定位误差主要来源于相位测量误差 14 3 4超短基线定位系统定位误差分析 分析 第一项 声速引起的误差第二项 测时误差引起的误差第三项 阵元间距不准引起的误差第四项 相位测量误差引起的误差 与角度 mx my有关 当接近90 即信标或应答器在基阵的下方 时 相位差很小 前3项影响很小 相位测量误差起主要作用 随 mx my减小 前3项影响加大当信标或应答器在靠近基阵所在平面 即角度很小 时 因有反射声影响 精度也难保证 结论 超短基线系统只在基阵下方一个有限的锥体内定位精度较高改进措施 加大基阵尺寸 采用宽带信号 0 15 3 4超短基线定位系统定位误差分析 误差与 m的变化关系注意 衡量相对定位误差时 两个相对误差公式计算的量值随 m的减小的趋势是不同的 在只考虑相位差测量误差时例 f0 20kHz d 0 04m c 1500m s h 4000m 1 表3 1在不同 m下 相位差测量相对误差 16 3 4超短基线定位系统定位误差分析 误差与 m的变化关系 跳象限 问题 跳象限 的现象 随 m的减小 定位精度难以保证存在水面反射 使直达声和反射声相加之后总和信号的相位发生变化 结果 使得计算的不正确 例如 信标本应在第I象限 而计算结果可能是X Y均为负值 误为第IV象限 结果 使载体相对于信标的位置轨迹不连续 这就是所谓的 跳象限 现象 跳象限 的情况主要由水面反射引起 可通过信号处理的方法解决 以前采用单频信号时 对信号处理的手段未进行较深入地研究 存在此种问题 现在采用宽带信号 信号处理的手段也较高 跳象限 的问题可以解决 17 3 5改善超短基线定位系统定位精度的措施 分析不考虑声速和阵元间距误差的情况下定位误差与阵元间距d成反比 d大则误差减小 与测距精度和测相精度成正比 测距精度和测相精度高则误差小 增加d的限制当d 2 阵元间最大相位差将会落在区间 之外 结果造成相位差测量模糊 致使位置解算发生错误 因此 d必须 2 18 3 5改善超短基线定位系统定位精度的措施 测时误差为改善测时误差可增加接收机输出信号 噪声比和带宽当采用CW脉冲时 信号带宽与脉冲宽度成反比 即 而匹配滤波器输出信 噪比为因此有测相误差为改善角度测量精度的方法是提高信 噪比 19 3 5改善超短基线定位系统定位精度的措施 增大基元间距改善定位精度1 2 或3 4 号和5 6 或7 8 号阵元测得的相位差为利用1 4号和5 8号阵元测得的相位差应为目标位置坐标为由 位置测量误差减小到原来的d D 1 N倍 即方位测量精度提高N倍 20 3 5改善超短基线定位系统定位精度的措施 增大基元间距改善定位精度由D Nd 8d Xa位置测量误差减小到原来的d D 1 N倍 即方位测量精度提高N倍若原阵元间距为d 2 则因此 要用小间距的两个基元辅助判断 两个大尺度基元的相位差 21 3 5改善超短基线定位系统定位精度的措施 采用宽带信号提高定位精度需要考虑的问题采用宽带信号 不能用测相的方法 必须采用测时的方法 测量两个基元回波信号的时延差 测时误差与采样间隔有关 当采样间隔被硬件的能力限制时 需要采用插值法 来提高测时精度 22 3 5改善超短基线定位系统定位精度的措施 采用宽带信号提高定位精度两阵元信号的时间差为则位置坐标为测量时延的方法 相关法 前沿法 精度不高 23 3 5改善超短基线定位系统定位精度的措施 采用宽带信号提高定位精度假设接收信号的时延为t0 则输入信号为参考信号为其中 B T称为调频斜率 B为信号带宽 拷贝相关器的输出为 24 3 5改善超短基线定位系统定位精度的措施 采用宽带信号提高定位精度接收的时延值t0 为最大值出现的时刻 相对定位误差 在只考虑时延测量对定位精度的影响时 相对定位误差为时延估计的精度 取决于采样频率fs 采样间隔 令时延测量误差等于采样周期的一半 即 采样间隔应满足 25 采用宽带信号提高定位精度提高测时精度的方法 插值估计相关峰的出现时刻设拟合波形函数为令则解得 26 Ar Br代入r3整理后得因为 Ts为采样周期 故上式可写为整理得由此估计出相关器输出信号的频率 27 最大值时有 而因此 又知 故可得出k的取值范围为通过以上诸式 可估计出相关峰的出现时刻 28 小结t0的估计方法 设拟合曲线求k k为非负的整数 29 3 6超短基线定位系统相位差测量方法 自适应陷波滤波器 Notch滤波器 自适应陷波滤波器是具有一对正交权值的自适应滤波器 参考信号为采用LMS算法的权值迭代公式为误差序列为 30 3 6超短基线定位系统相位差测量方法 利用Notch滤波器测量信号的相位比较x k 与y k 可得因此有自适应陷波器的带宽为 31 3 6超短基线定位系统相位差测量方法 自适应相位差估计器算法构成两个信号的初相位 利用前面的结论 32 3 6超短基线定位系统相位差测量方法 自适应相位差估计器两个信号的相位差相位差的均值利用一阶递归滤波器对各个权值进行平均或直接对各权值进行平均相位差的均值 33 3 7超短基线定位系统的标校 基元相位差校准进行标校的目的 解决系统误差针对系统误差进行校准校准的方法转动基阵使利用相位差估计器测得的其中两个基元相位差为0 此相位差为理论入射相位差减系统相位差 同时记录垂直的另外两基元的接收相位差 再次转动基阵约180 垂直 再次使两个基元相位差为0 同时记录垂直的另外两基元的接收相位差 利用公式求解出系统的相位差 定位时 在时间测量 计算信号入射角时 扣除这一附加相位差 34 3 7超短基线定位系统的标校 基元相位差校准1 无高精度的机械转动系统时设理论相位差值为 21 0 和 23 0 由电路和水听器造成的相对相位误差为 21 e 和 23 e 利用相位差估计器测得的两个相位差为 21 21 0 21 e 23 23 0 23 e 调整调整基阵角度 使上式为0 即此时测得另两阵元间的相位差为 35 3 7超短基线定位系统的标校 基元相位差校准1 无高精度的机械转动系统时将基阵转动大约180度 再次调整基阵角度使测得的1 2号阵元间的相位差为0 此时两次坐标轴间的夹角为 于是有 36 3 7超短基线定位系统的标校 基元相位差校准由 1 3 式 可得 由 2 4 式 可得 37 3 7超短基线定位系统的标校 基元相位差校准2 有高精度的机械转动系统时第一步 直接测量记录两两阵元的相位差第二步 将基阵转动180度之后再记录这两个相位差为 因此可直接得到 38 3 7超短基线定位系统的标校 基元相位差校准3 当测量不满足远场条件时基阵未转动时测量的两阵元间的相位差为考虑到h di 而 x也很小 经一阶近似后有因而理论相位差 近似值 为 阵中心 Ri Rr 39 3 7超短基线定位系统的标校 基元相位差校准3 当测量不满足远场条件时将基阵围绕中心转动180度之后 再次测得两阵元的相位差 记为 有与基阵未转动时同样的方法 可得 40 3 7超短基线定位系统的标校 基元相位差校准3 当测量不满足远场条件时 阵中心 Ri Rd 式 1 式 2 得 式 3 和式 4 代入式 5 得 41 3 7超短基线定位系统的标校 超短基线系统的海上校准进行标校的目的 解决系统误差标校 针对系统误差进行校准阵元相位误差 测量在水池进行阵元间距误差 制作基阵时保证需要的传感器垂直参考设备 测量基阵姿态角 纵 横摇角 姿态传感器 姿态测量仪 罗径 测量船的航向角高精度GPS 测量船位PGPS 42 3 7超短基线定位系统的标校 超短基线系统的海上校准海上校准的基本过程围绕应答器按某一航线航行 用超短基线测量应答器的位置 同时记录GPS 罗经 姿态仪的数据进行坐标系的转换将应答器在基阵坐标系中的位置转换为大地坐标系的位置每一次测量值与应答器的参考位置进行比较利用高斯 牛顿法解观测方程应答器的参考位置xRef用长基线的方法确定 为由船坐标系向大地坐标系转换的方向余弦矩阵 它由船的航向角 横摇角 和纵倾角 的正 余弦构成 由基阵坐标系向船坐标系转换的方向余弦矩阵 称为失配矩阵 它也由3个角度 的正 余弦构成 为用GPS测得的大地坐标船位 天线位置 应答器在基阵坐标系中的位置 43 法国OCEANO公司超短基线系统产品Posidonia 船的路径和应答器的原始 轨迹 原点 推算的应答器位置 原始数据和补偿失配后的数据 原点 推算的应答器位置 44 3 7超短基线定位系统的标校 基元相位差校准针对系统误差进行校准阵元附加相位误差 在水池进行阵元间距误差 制作基阵时保证海上校准 超短基线系统的海上校准坐标系的转换海上校准的基本过程校准结果 45 3 7超短基线定位系统的标校 基元相位差校准基阵系统测量的应答器位置为xArray Xa Ya Za 应答器的大地坐标为PEarth PGPS BAttxArrayBAtt 3个姿态角的方向余弦矩阵 若在基阵安装时船的框架未与基阵框架配准 则须进行额外的旋转变换BAlign 常数矩阵 由3个角度偏移量决定以应答器地理坐标为观测值 以 为未知数 利用参数估计法估计参数 46 3 7超短基线定位系统的标校 超短基线系统的海上校准海上校准的基本过程围绕应答器按某一航线航行 用超短基线测量应答

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论