




已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一次函数的图象 4 一次函数y kx b的性质 1 当k相同时 这些直线平行 2 当k 0时 y随x的增大而增大 从左到右看函数的图象是上升的 当k 0时 y随x的增大而减小 从左到右看函数的图象是下降的 3 b决定了直线与y轴交点的位置 k决定了图像的增减性 两者共同决定直线经过的象限 y2 2x 4 y1 2x y3 2x 2 观察 将正比例函数y1 2x通过怎样的变化能得到另两条直线的 仔细观察 y 2x 4 y y 2x y 2x 2 函数y 2x通过怎样的平移得到其他函数关系式的 正比例函数y kx的图象是经过原点的一条直线 性质4 一次函数y kx b的图象是由正比例函数y kx的图象沿y轴向上 b 0 或向下 b 0 平移 b 个单位得到的一条直线 一次函数y kx b的性质4 一次函数y kx b 如b增加2个单位 则它的图象 a 向右平移两个单位 b 向上平移两个单位 c 向下平移两个单位 d 向左平移两个单位 b 结论 1 若将直线y kx b向上平移m m 0 个单位 则所得直线解析式为y kx b m 2 若将直线y kx b向下平移m m 0 个单位 则所得直线解析式为y kx b m 上 下 例 求下列直线的解析式 直线y 3x向下平移2个单位 直线y 3x 1向下平移5个单位 直线y 3x向左平移2个单位 直线y 3x向右平移3个单位 y2 2x 4 y1 2x y3 2x 2 思考 可以将函数y1 2x向左或向右平移得到另两条直线的吗 仔细观察 结论 若将直线y kx b向上平移m m 0 个单位 则所得直线解析式为y kx b m 若将直线y kx b向下平移m m 0 个单位 则所得直线解析式为y kx b m 若将直线y kx b向左平移n n 0 个单位 则所得直线解析式为y k x n b 若将直线y kx b向右平移n n 0 个单位 则所得直线解析式为y k x n b 左 右 上 下 例 求下列直线的解析式 直线y 3x向下平移2个单位 直线y 3x 1向下平移5个单位 直线y 3x向左平移2个单位 直线y 3x向右平移3个单位 5 直线y x 8向左平移3个单位 6 直线y x 4向右平移1个单位 例 求下列直线的解析式 7 直线y 2x 1先向右平移1个单位再向上平移2个单位 1 把直线向右平移2个单位后得到直线经过点 1 1 1 求这个一次函数关系式 2 如果把直线向上或向下平移多少个单位能够得到直线 随堂练习 4 一次函数y ax b与y ax c a 0 在同一坐标系中的图象可能是 挑战自我 a b c d a 对于直线y kx b k 0 1 点a的坐标 点b的坐标 2 oa ob 3 s ab0 x y y kx b 0 b 0 b a b 复习 1 已知一次函数y 3x b的图象 1 与x轴交于a 与y轴交于b 求a b的坐标 2 oa ob分别是多少 3 直线与两坐标轴围成的三角形面积为6 求该函数的解析式 2 已知直线y kx 3 k 0 与坐标轴围成的面积为6 求此函数的关系式 由s 6 得 k 或 3 已知一次函数y kx b的图象与x轴交于a 4 0 且与两坐标轴围成的三角形面积为8 求该函数的解析式 3 如图 设a x0 y0 b x1 0 c x2 0 则s abc 如图 设a x0 y0 b x1 0 c x2 0 则s abc 观察 一 探索 如图 设a x0 y0 b x1 0 c x2 0 则s abc 观察 一 探索 如图 设a x0 y0 b 0 y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全体员工安全培训课件
- 入职安全培训课件缺失问题
- 催乳知识培训内容
- 保安培训法律知识课件
- 规范干部使用管理办法
- 企业消防安全培训教材课件
- 检察救助基金管理办法
- 税务稽查发票管理办法
- 校区巡查工作管理办法
- 纪委公车使用管理办法
- 2023-2025年中考语文试题分类汇编:记叙文阅读(辽宁专用)解析版
- 2025年公路检测工程师《水运结构与地基》试题及答案
- 学校食堂从业人员食品安全知识培训考试试题(含答案)
- 电影艺术概述-设计艺术-人文社科-专业资料
- 2025年教科版新教材科学三年级上册全册教案设计(含教学计划)
- 医院药品采购与质量控制规范
- 支部纪检委员课件
- 从+“心”+出发遇见更好的自己-开学第一课暨心理健康教育主题班会-2025-2026学年高中主题班会
- 2025版仓储库房租赁合同范本(含合同生效条件)
- 隔爆水棚替换自动隔爆装置方案及安全技术措施
- 2025年人伤保险理赔试题及答案
评论
0/150
提交评论