高中数学 3.2.1《对数及其运算》 课件二 新人教B版必修1.ppt_第1页
高中数学 3.2.1《对数及其运算》 课件二 新人教B版必修1.ppt_第2页
高中数学 3.2.1《对数及其运算》 课件二 新人教B版必修1.ppt_第3页
高中数学 3.2.1《对数及其运算》 课件二 新人教B版必修1.ppt_第4页
高中数学 3.2.1《对数及其运算》 课件二 新人教B版必修1.ppt_第5页
已阅读5页,还剩10页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

对数的概念 新课引入 上节课我们学习指数函数 研究细胞分裂时 曾经归纳出 第x次分裂后 细胞的个数为y 2x 给定分裂的次数x 我们可以求出细胞个数y 有时我们会遇到这样的问题 已知一个细胞分裂x次后细胞的个数是1024 问这个细胞分裂了几次 即 2x 1024 则x 所以须要创立新的符号 能在已知底数和幂的值时 表示出该指数的表达式 这就是我们本节课将要学习的对数及对数符号 又看如下问题 现今我国总产值每年比上年约平均增长8 问经过几年 总产值是今年的2倍 设今年总产值为a亿元 经过x年 总产值是今年的2倍 则可列式 a 1 8 x 2a 即得1 08x 2此式的x如何解出 表达出 呢 新课引入 可是也有不少与上列数学式同类的式子 还不易解决和表达 例如 形成概念 一般地 如果a a 0 a 1 的b次幂等于n 即ab n 那么数b叫做以a为底n的对数 记作 logan b 式中的a叫做对数的底数 n叫做真数 对数式 logan 表示的意思就是 一个乘方的底数是a 乘方的结果是n时所 对应的那个指数 书写格式 对数等式logan b写为乘方等式就是ab n 乘方等式ab n 写为对数等式就是logan b但要注意两式中字母a n b的称呼的异同 logan b就是ab n 底数 底数 真数 幂 对数 指数 a 0 a 1 形成概念 概念深化 由对数式定义 logan b ab n a 0 a 1 可知 不论b是什么实数 总有ab 0 即式ab n中的幂n永远是正数 也即式logan中的真数n永远是正数 因此负数和零没有对数 例如 式log20 log3 3 以及log05 log 23 log12等都无意义 有了对数知识 前面提出的 已知底数和幂的值 如何用 含有底数和幂的 式子去表达出与其对应的指数 之问题就迎刃而解了 例如 因为42 16 所以底数为4 幂为16 对数 对应的指数 是2 就可写为log416 2 从事例 20 1 写为对数就是log21 0 0 3 0 1就是log0 31 0 100 1就是log101 0 猜想应有公式 证明 设loga1 x由对数的定义就有ax 1 又1 a0 a 0 a 1 ax a0 一定有x 0 即得loga1 0 从事例 21 2 写为对数就是log22 1 0 3 1 0 3就是log0 30 3 1 101 10就是log1010 1 猜想应有公式 概念深化 证明 设logaa x由对数的定义就有ax a 又a a1 a 0 a 1 ax a1 一定有x 1 即得logaa 1 x 思考 此指数式 指数是logan 写为对数式就是logax logan 令logax logan b 则有ab x又有ab n x n 得公式 解 概念深化 对数恒等式 例1将下列指数式写成对数式 1 54 625 log5625 4 解 解 3 3a 27 解 log327 a 解 例2将下列对数式写成指数式 解 2 log2128 7 解 27 128 3 lg0 01 2 解 10 2 0 01 例3 1 求log279的值 解 设log279 b 2 已知2logx8 4 求x的值 解 由2logx8 4 先化简得logx8 2 再化为33b 32 3b 2 由对数式的定义则有x2 8 由对数式的定义则有27b 9 1 下列指数式与对数式互化不正确的一组是 a 100 1与lg1 0 b log55 1与51 5 c d a b c d 解 只有c中两式的底数不同 一为3 另一为9 c不正确 选c 3 如果n a2 a 0 且a 1 则有 a log2n a b log2a n c logna 2 d logan 2 a y7 xz b y x7z c y 7 xz d y z7x 解 根据对数的定义 n a2中的指数2叫做以a为底n的对数 记作logan 2 应选d 课堂练习 1 将下列指数式写成对数式 1 23 8 2 25 32 2 将下列对数式写成指数式 1 log39 2 2 log5125 3 3 求下列各式的值 1 log525 3 lg100 4 lg0 01 5 lg10000 6 lg0 00014 求下列各式的值 1 log1515 2 log0 41 3 log981 4 log2 56 25 5 log73

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论