




已阅读5页,还剩27页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学科 高中数学 题目 定积分的概念 作者 王建军 单位 江西樟树三中 邮编 331200 电话应用说明 1 本作品运用了powerpoint本作品在Win2003或WinXP下运行2 本课件高中数学北师大版2 2的第四章的第一节的第一课时使用 定积分的概念 第一课时 樟树三中王建军 一 引进定积分概念的两个例子 1 曲边梯形的面积 曲边梯形 在直角坐标系下 由闭区间 a b 上的连续曲线y f x 0 直线x a x b与x轴围成的平面图形AabB 基于这种想法 可以用一组平行于y轴的直线 把曲边梯形分割成若干个小曲边梯形 只要分割得较细 每个小曲边梯形很窄 则其高f x 的变化就很小 这样 可以在每个小曲边梯形上作一个与它同底 底上某点函数值为高的矩形 曲线y f x 是连续的 所以 当点x在区间 a b 上某处变化很小时 则相应的高f x 也就变化不大 显然 分割越细 近似程度就越高 当无限细分时 则所有小矩形面积之和的极限就是曲边梯形面积的精确值 用小矩形的面积近似代替小曲边梯形的面积 进而用所有小矩形面积之和近似代替整个曲边梯形面积 1 分割 在区间 a b 内任意插入n 1个分点 a x0 x1 x2 xi 1 xi xn 1 xn b 把区间 a b 分成n个小区间 x0 x1 x1 x2 xi 1 xi xn 1 xn 这些小区间的长度分别记为 xi xi xi 1 i 1 2 n 过每一分点作平行于y轴的直线 它们把曲边梯形分成n个小曲边梯形 根据以上分析 可按下面四步计算曲边梯形面积 a x0 x1 xi 1 xn b xi 2 近似代替 在每个小区间 xi 1 xi i 1 2 n 上取一点xi xi 1 xi xi 以f xi 为高 xi为底作小矩形 用小矩形面积f xi xi近似代替相应的小曲边梯形面积 Ai 即 Ai f xi xi i 1 2 n x1 x2 xi xn 4 取极限 当分点个数n无限增加 即 3 求和 把n个小矩形面积加起来 它就是曲边梯形面积的近似值 即 且小区间长度的最大值 即 max xi 趋近于0时 上述和式的极限就是曲边梯形面积的精确值 A A1 A2 An 将曲边梯形分成n个小曲边梯形 并用小矩阵形的面积代替小曲边梯形的面积 于是曲边梯形的面积A近似为 以直代曲 无限逼近 如何求曲边梯形的面积 2 变速直线运动的路程 设一物体作直线运动 已知速度v v t 是时间t的连续函数 求在时间间隔 T1 T2 上物体所经过的路程s 1 分割 在时间间隔 T1 T2 内任意插入n 1个分点 T1 t0 t1 t2 ti 1 ti tn 1 tn T2 把 T1 T2 分成n个小区间 t0 t1 t1 t2 ti 1 ti tn 1 tn 这些小区间的长度分别为 ti ti ti 1 i 1 2 n 相应的路程s被分为n段小路程 si i 1 2 n 2 近似代替 在每个小区间上任意取一点xi ti 1 xi ti 用xi点的速度v xi 近似代替物体在小区间上的速度 用乘积v xi ti 近似代替物体在小区间 ti 1 ti 上所经过的路程 si 即 si v xi ti i 1 2 n 3 求和 4 取极限 二 定积分的定义 定义设函数f x 在区间 a b 上有定义 任意取分点 a x0 x1 x2 xi 1 xi xn 1 xn b 把区间 a b 分成n个小区间 xi 1 xi 称为子区间 其长度记为 xi xi xi 1 i 1 2 n 在每个子区间 xi 1 xi 上 任取一点xi xi 1 xi xi 得相应的函数值f xi 作乘积 f xi xi i 1 2 n 把所有乘积加起来 得和式 当n无限增大 且子区间的最大长度l 即l max xi 趋于零时 如果上述和式的极限存在 则称函数f x 在区间 a b 上可积 并将此极限值称为函数f x 在 a b 上的定积分 记作 即 定积分的定义 定积分的相关名称 叫做积分号 f x 叫做被积函数 f x dx 叫做被积表达式 x 叫做积分变量 a 叫做积分下限 b 叫做积分上限 a b 叫做积分区间 符号 读作函数f x 从a到b的定积分 积分下限 积分上限 关于定积分定义的几点说明 1 所谓和式极限 即函数f x 可积 是指无论对区间 a b 怎样分法 也不论对点xi i 1 2 n 怎样取法 极限都存在且有相同的极限值 2 可以证明 闭区间上连续函数或只有有 3 因为定积分是和式极限 它是由函数f x 与区间 a b 所确定的 因此 它与积分变量的记号无关 即 限个第一类间断点的函数是可积的 4 该定义是在积分下限a小于积分上限b的 此时 只要把插入分点的顺序反过来写 a x0 x1 x2 xi 1 xi xn 1 xn b 由于xi 1 xi xi xi xi 1 0 于是有 特殊地 当a b时 情况下给出的 如果a b 同样可给出定积分 即可 根据定积分的定义 上面两个例子都可以表示为定积分 1 曲边梯形面积A是曲边函数f x 在区间 a b 上的定积分 即 2 变速直线运动的路程s是速度函数v x 在时间间隔 T1 T2 上的定积分 即 例1用定义计算 解被积函数f x ex 在区间 0 1 上连续 所以e x在 0 1 上可积 为了计算方便起见 把区间 0 1 等分成n份 分点为 当l max xi 0 时 即n 有 于是有 x a x b与x轴所围成的曲边梯形的面积 三 定积分的几何意义 当f x 0时 由y f x x a x b与x轴所围成的曲边梯形位于x轴的下方 S 上述曲边梯形面积的负值 定积分的几何意义 S 探究 根据定积分的几何意义 如何用定积分表示图中阴影部分的面积 四 定积分的基本性质 性质1 性质2 四 定积分的基本性质 定积分关于积分区间具有可加性 性质3 思考 从定积分的几何
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 红酒基础知识和知识培训课件
- 红酒产品知识培训课件
- 2025合作协议共同盈利分红合同
- 数据分析可视化工具使用手册
- 项目管理风险预警分析模板
- 农产品电商平台入驻与合作协议书
- 企业员工培训计划及合作协议细节条款书
- 公司合作经营协议核心条款
- 诗歌鉴赏景物描写课件
- 诗歌鉴赏对比衬托课件
- 2025年部编版语文四年级上册全册单元、期中、期末测试题及答案(共10套)
- 村级妇联半年工作总结
- 数控安全培训课件
- 台球俱乐部工作管理制度
- 肉毒素中毒的治疗讲课件
- 蓝色简约风医学生职业生涯规划展示模板
- 土建安全员c类考试试题及答案
- 第四版(2025)国际压力性损伤溃疡预防和治疗临床指南解读
- 职业学校化妆课教案
- 《泡泡玛特营销策略问卷调查及消费者RFM分析案例综述》2000字
- DB32T 4772-2024自然资源基础调查技术规程
评论
0/150
提交评论