JDYY01-014@无心外圆砂带磨床自动上下料控制设计
收藏
资源目录
压缩包内文档预览:
编号:491607
类型:共享资源
大小:8.25MB
格式:ZIP
上传时间:2015-11-06
上传人:QQ28****1120
认证信息
个人认证
孙**(实名认证)
辽宁
IP属地:辽宁
30
积分
- 关 键 词:
-
机械毕业设计全套
- 资源描述:
-
JDYY01-014@无心外圆砂带磨床自动上下料控制设计,机械毕业设计全套
- 内容简介:
-
基于 PLC 控制的液压控制系统 摘要 采用可编程控制器 (PLC)代替继电器控制器,对机械手的液压驱动系统进行控制,通过输入输出接口 建立与机械手液压系统开关量和模拟量的联系,实现机械手搬运工件的顺序动作和自动控制,达到准确度高、控 制方便、可靠性好的目标,大大提高了生产率和自动化程度,减少了系统故障,具有很强的实用性。 关键词 PLC;液压控制;机械手 1、 前言 ( Introduction) 目前 PLC 在工业生产过程控制自动化和传统产业技术改造等方面得到了广泛应用 , 与传统 的继电器控制相比 , PLC 具有控制系统构成简单、可靠性高、通用性强、抗干扰能力强、易于编程、体积小、可在线修改、设计与调试周期短、便于安装和维修等突出优点 , 而且一般不需要采取什么特殊措施 , 就能直接在工业环境中使用 , 更加适合工业现场的要求 , 使用PLC 控制液压控制系统能提高系统的整体性能 ,具有较明显的优越性。本文介绍基于 PLC 控制的某液压机械手的典型液压控制回路及其 PLC 控制方法。 2、 控制要求分析 (Analys is of control demands ) 在生产现场工作开始后 , 机械手在一个工作循环中需要依次完成以下顺序动作 : 下降、夹紧、上升、左移、下降、松开、上升、右移 ( 共 8 个顺序动作 ) , 这是一个典型的顺序控制问题。采用 PLC 实现机械手的自动循环控制 , 需要在某些动作位置设置位移传感器或行程开关来检测动作是否到位 , 并确定从一个动作转入到下一个动作的条件。根据机械手的动作要求 , 选用 3 个液压缸来完成该 8 个顺序动作 : 升降缸 1 在工件两个位置 ( 原位与目标位置 ) 上方的下降和上升运动 , 移动缸 2 的左移和右移运动 , 夹紧缸 3 的夹紧和松开动作。缸1 下降或上升到位时应 停止运动 , 缸 2 左移或右移到位时也应停止运动 , 故需分别设置一行程开关 S1、 S2、 S3、 S4。根据机械手的动作过程和要求 , 绘制出系统的控制功能流程图 , 如图 1 所示。 nts 图 1 3、 液压系统图 (Hydraulic scheme) 根据机械手的动作要求和工作循环设计出液压系统图 , 如图 2所示 : 图 2 按下启动按钮 , 电磁铁 1DT 得电 , 阀 4 左位接入 , 液压泵 9 输出的压力油经阀 4 左位接入升降缸 1 的上腔 , 其活塞向下运动 , 推动机械手下降 ( 动作 右位下降 ) ; 当缸 1 下降到下限位置 , 压下行程开关 S1, 使得电磁铁 1DT 断电 , 阀 4 切换至中位 (O 型中位机能 ) , 缸 1 停止在下限位 , 而电磁铁 5DT 得电 , 阀 8 左位接入 , 泵输出的压力油经过单向阀 6、减压阀7 进入夹紧缸 3 的上腔 , 推动其活塞下移夹紧工件 ( 动作夹紧 ) ; 夹紧工件后 , 当缸 3 上腔压力达到减压阀 7 的调定压力时 , 压力继电器 11 动作发出信号 , 控制电磁铁 2DT 得电 , 阀 4 的右位接入系统 , 推动缸 1 向上运动 ( 动作右位上升 ) ; 缸 1 上升到上限位置时 , 压下行程开关 S2, 电磁铁 2DT 断电 , 阀 4 切换到中位 , 缸 1 停止在上限位 , 而电磁铁 3DT 得电 ( 此时工件仍被夹紧 , 压力继电器 11 仍在动作 ) , 阀 5 左位接入 , 缸 2 向左运动 ( 动作左移 ) ; 缸 2 左移到左限位置 , 压下行程开关 S3, 电磁铁 3DT 断电 , 阀 5 切图 2 换至中位 ,缸 2 停止在左限位 , 而电磁铁 1DT 得电 , 阀 4 左位接入系统 , 缸 1 向下运动 ( 动作左位下降 ) ; 缸 1 下降到下限位置 , 压下行程开关 S1( 此时缸 2 处于左限位置 ) , 电磁铁 5DT 断电 , 阀 8 回复右位 , 缸 3 活塞上移放下工件于目标位置 ( 动作松开 ) ; 松开工件后 , 缸 3 油腔压力降低 , 压力继电器 11 复位 , 发出信号控制电磁铁 2DT 得电 , 缸 1 向上运动 ( 动作左位上升 ) ; 上升到上限位置 , 压下行程开关 S1, 电磁铁 2DT断电 , 缸 1 停止在上限位置 , 同时电磁铁 4DT 得电 , 阀 5 右位接入 , 缸 2 向右移动 ( 动作右移 ) ; 右移到右限位置 , 压下行程开关 S4, 阀 5 切换至中位 , 缸 2 停止在右限位置 ( 复位 ) 。至此完成了机械手的 8 个自动控制动作 , 进入到下个动作循环 。电磁铁动作顺序表如表 1(“ +”表示得电 ,“ - ”表示断电 ) 所示。 表 1 电磁铁动作顺序表 nts 该液压系统中 , 利用电液比例换向阀 4 和 5 控制升降缸 1 和移动缸 2 的运动速度 , 用比例溢流阀 12 控制夹紧缸的夹紧速度 ; 减压阀的作用是限定并保持 夹紧压力 , 单向阀的作用是对夹紧液压缸 3 进行保压 , 比例溢流阀 12 还起到平衡作用。在 PLC 对各输入输出量的控制下 , 完成顺序动作。 4、 PLC 选型与 I/O 分配 (PLC lectotype and input-output allocation) 目前市场上的 PLC 品种规格众多 , 控制功能也各有特点。综合分析机械手的动作要求 , PLC 在机械手中需要完成的控制功能较多 , 控制精度较高 , 运算速度较快且具有数据处理能力 , 并考虑整个系统的经济和技术指标 , 由于 PLC 的输出电流较小 , 需要用功率模块来控制比例液压阀 , 选用西门子公司的 S7- 200 系 CPU226 型 PLC, 其 I/O 功能和指令系统都能满足对该机械手的控制要求。控制按钮、各处的行程开关及压力继电器等开关量信号直接与 PLC 的输入端子相连 , PLC的开关量输出端子直接与各个电磁阀相连 , 用 PLC 上所带的 24V 电源或外接 24V 电源驱动 , 采用编程软件 ( STEP 7-Micro/WIN V4.4 版 )进行编程和运行监控。图 3 为 PLC 的 I/O 地址分配和外部接线图 , 限于篇幅没有具体给出硬件布置原理图和控制系统梯 形图及其程序语句。 nts 图 3 系统设有 5 种工作方式 : 手动、连续、单周期、单步和回原点 , 可以满足不同的工作要求。 5、 结论 (Conclus ions ) 采用 PLC 控制的搬运工件机械手的液压控制系统 , 使系统模块化 , 减小了液压系统和设备的体积 , 其工作性能稳定且各 I/O 指示简单、明了 , 大大缩短了维修、改制、安装和调试液压系统和设备的时间。克服了采用继电器控制系统必须是手工接线、安装、改动所需要花费大量时间及人力和物力的缺点 , 也克服继电器控制系统的可靠性差、控制不方便、响应速度慢等不足。用 PLC 控制的机械手的液压控制系统 , 可使其工作平稳、准确 , 更有利于改善工人的劳动环境 , 降噪增效 ,节约能源 , 而且提高了液压系统的性能 , 延长液压设备的使用寿命 , 大大提高了生产率和自动化程度 , 特别是改变机械手的某些 动作时时仅需进行程序的调整。 总之 , 基于 PLC 控制的液压控制系统 , 可大大简化控制设备的结构 , 节能降耗 , 易于实现机、电、液一体化的控制装置 , 使生产平稳可靠、效率和自动化程度提高。 参考文献 : 1 章宏甲 ,黄谊 ,王积伟 .液压与气压传动 M.北京 :机械工业出版社 ,2000.5. 2 何存兴 ,张铁华 . 液压与气压传动 (第二版 ) M.武汉 :华中科技大学出版社 ,2000.8. 3 姜继海 ,宋锦春 ,高常识 . 液压与气压传动 M.北京 :高等教育出版社 ,2002.8. 4 陈在平 ,赵相宾 .可编程控制器技术与应用系统设计 M.北京 :机械工业出版社 ,2002.6. 5 高钦和 .可编程控制器应用技术与设计实例 M.北京 :人民邮电出版社 ,2004.7. 6 廖常初 .PLC 编程及应用 (第 2 版 ) M.北京 :机械工业出版社 ,2005.5. nts机电综合实验 XXXX 大学 液压系统的 PLC 控制 实验报告书 姓名: XXX 班级: XXX 学号: XXX 指导老师: XXX 实验时间: 2011/4/22 2011/4/25 nts 2 目录 一、实验目的与要求 .3 二、总体方案 .4 三、液压控制回路 .5 四、得失电状态表 .8 五、电气原理图 .9 六、 I/O 端口分配 .11 七、程序设计与系统流程图 .12 八、自我总结 .16 九、程序清单 .18 附录 本组成员名单 及 任务分配 .23 nts 3 一、实验目的与要求 1、实验目的 ( 1)能熟悉基于 plc 控制的液压系统开发流程,并设计一个具体的气动、液压系统。 ( 2)熟悉并掌握各种液压元件的技术参数和使用方法。 ( 3)熟练掌握 plc 编程方法。 ( 4)能熟练使用梯形图编写液压系统的控制软件。 ( 5)搭建具体硬件(含油、电路)连接,并完成软硬件的联调。 2、实验器材 计算机、液压泵、各种液压阀、气动元件、油管、液压接头、 plc 实验板、导线。 3、实验要求 根据本人在本次实验中学习到的相关知识作答。 ( 1)详细说明本次实验设计思路、方案,画出动作循环、系统油路、控制电路原理图,并文字说明。 ( 2)详细说明 plc 控制流程,确定输入 /输出口,作 I/O 规划。 ( 3)画出 plc 控制梯形图,要求自锁、定时器。 ( 4)说明本次实验使用的传感器,与控制电路的接口。 ( 5)自我总结。 nts 4 二、总体方案 1、根据实验要求,本组最终确定的方案为能够在 X-Y 方向上铣削出工件的平面,机械本体如图( 1)所示。 图( 1) 如图( 1)是一个 XY 轴十字滑 台,其上面有一个可以固定工件的平台。此 XY 轴十字滑台是在铣平面的时候用的,采用液压缸控制。其各个阶段的速度包括工进,快进,快退都是由液压回路里的调速阀控制。由于铣床只要求铣完整个平面,而不要求其能够加工出各种图案。故采用这样的方法来调速是可以的。图中的 ST1、 ST2、 ST3、 ST4 接近开关所在的位置是滑台整个的工作范围。 ST0 是滑台的原点位置。在整个的加工过程中,工作台首先从 ST0 开始以快进的速度运动到 ST1 位置,接触到 ST1 时,开始工进(铣平面)。当滑台接触到 ST2 时,此时系统开始延时, X 轴停止nts 5 工进 0.5s, Y 轴向前工进 0.5s。当延时完成后, X 轴开始向负向工进,而Y 轴停止工进。当到达 ST1 的位置时,重复如上的动作, X 轴开始向正向工进。如此往复,直到触发 ST4 开关。此时 Y 轴首先快退回 ST3 位置,然后 X 轴快退回 ST0 位置。这道工序就完成了! 三、液压控制回路 1、其动作循环图如图( 2)所示 图( 2) 2、液压油路系统图如图( 3)所示 X 轴快进 X 工进 X 轴停 Y 工进 X 工退 X 轴停 Y 工进 X 快退 Y 快退 循环 ST4触发 nts 6 MY A 5Y A 1 Y A 2 Y A 3 Y A 4Y A 6图( 3) 如图( 3)是一个 XY 轴十字滑台的油路图,其两个缸的油路是一样的。XY 轴滑台各个阶段的速度包括工进,快进,快退都是由液压回路里的调速阀控制。由于铣床只要求铣完整个平面,而不要求其能够加工出各种图案。故采用这样的方法来调速是可以的。图中的主油路旁边接有溢流阀,在主油路中的油压过大时,起到一个卸荷的作用。当 X 轴快进的时候, YA5、YA1 得电,油路不经过调速阀,所以油的流速比较大,起到快进的作用。当 X 轴工进的时候, YA5 不得电,油路就得经过调速阀,从而油的流量下降, X 轴工进。当 X 轴快退的时候, YA5、 YA2 得电,开始快退。 Y 轴的调速原理和 X 轴一样。 2、液压回路中所用到的液压元件 名称、符号、及其作用说明,见表( 1) nts 7 表( 1) 序号 名称 符号 作用 1 三位四通电磁换向阀 通过阀芯与阀体之间的相对运动改变液体的流向,控制液压缸前进和后退。 2 两位两通电磁换向阀 通过阀芯与阀体之间的相对运动改变液体的流向,控制液压缸前进和后退。 3 双作用单活塞杆缸 将液压能转换成机械能,实现往复直线运动。 4 节流阀 控制油路中流量大小。 5 单向定量液压泵 将液压油从油缸引入液压油路中,将机械能转化为液压能。 6 溢流阀 保持系统压力恒定, 在系统压力大于或等于其调定压力时开启,流对系统起过载保护作用。 7 油箱 为系统存储液压油 nts 8 四、得失电状态表 1、得失 电状态或顺序表,如表( 2)所示 工序号 工序名称 发信元件 执行元件 输入及检测元件 JC1 JC2 YA1 YA2 YA3 YA4 YA5 YA6 ST0 ST1 ST2 ST3 ST4 1 启动泵 SB1 1 2 主轴启动 SB2 1 3 急停 SB3 手动 选X/Y轴 SB4- X 轴 SB4+ Y 轴 前进 SO1+ X 轴 1 SO1- Y 轴 1 后退 SO3+ X 轴 1 SO2+ Y 轴 1 自动 单循环触发 SB7 1 1 1 1 4 X 轴快进 ST0;ST3 1 1 1 5 X 轴工进 ST1 1 1 nts 9 6 X 轴工进停 ST2 1 1 1 7 Y 轴工进 ST2 1 1 8 X 轴工退 Plc 中间变量 1 9 X 轴工退停 ST1 1 1 10 Y 轴工进 ST1 1 1 11 循环 12 Y 轴快退回原点 ST4 1 1 1 13 X 轴快退回原点 1 1 14 原点停 ST0; 1 1 表( 2) 五、电气原理图 1、电气原理图如图( 4)所示 nts 10 图( 4) nts 11 如图( 4)所示是控制 XY 轴十字滑台的主电路和控制电路图。由于所涉及的电机只要求启停,所以主电路图中只含有一个开 关 KM1。在电机的机壳上装有 FR 热继电器,当电机过度发热时,开关将会自动断开,起到保护的作用。控制电路采用的是 台达 PLC DVP32EH00R2-L ,其输出线圈采用 24V 电压。其输入端含有 4 个接近开关,分别是原点, XY 轴的限位开关。从 X1 X7 是手动开关的输入端口。 PLC DVP32EH00R2-L 具体信息为: 工作电压 220( V) 输出频率 50( kHz) 产品认证 CE UL 3C 台达 PLC DVP32EH00R2-L 是 16DI/16DO(继电器 ),能满足实验要求。 六 、 I/O 端口分配 I/O 端口分配,如表( 3)所示 输入 输出 输入设备接口 继电器地址 输出设备接口 输出设备 选择手动 /自动 SO0 X0 泵启动按钮 SB1 X 1 Y1 KM1 主轴启动按钮 SB2 X2 Y2 KM 2 急停按钮 SB3 X3 Y3 YA1 选择轴按钮 SB4 X4 Y4 YA5 单触发启动按钮 SB8 X5 Y5 YA3 旋钮开关 SO1 (手动正向进给) X6 Y6 YA2 自动按钮 SB7 X7 Y7 YA4 接近开关 ST0 X10 Y10 YA6 接近开关 ST4 X11 Y11 YA2 接近开关 ST1 X12 Y12 YA5 接近开关 ST2 X13 nts 12 接近开关 ST3 X14 手动进给旋钮 SO2 X15 手动快退旋钮 SO3 X16 表( 3) 七、程序设计与系统流程图 1、系统流程图如图( 5)和图( 6)所示 系 统 总 程 序 开始泵 电 机 启 动主 轴 电 机 启 动自 动Y单 周 期 触 发N选 X / Y 轴Y工 退工 进X工 进 工 退E N D图( 5)系统控制流程总图 nts 13 单 周 期 触 发 子程 序 启 动接 近 开 关S T 0 、 S T 3X 轴 快 进Y接 近 开 关 S T 1NYX 轴 工 进接 近 开 关S T 2NYX 轴 工 进 停 / Y轴 工 进Y 轴 工 进 停 / X轴 工 退接 近 开 关S T 1NYX 轴 工 退 停 / Y轴 工 进接 近 开 关S T 4YY 轴 快 退接 近 开 关S T 3NYY 轴 快 退 停 / X轴 快 退接 近 开 关S T 0NY停 止图( 6)单周期触发子程序控制流程图 nts 14 2、程序设计与解释 程序的手动与自动模式选择, 并完成于下面程序的互锁。 程序实现了单循环启动和循环启动,并与手动模式完成了互锁,本身完成了自锁,为保护液压元件及电气设备选择了延时。 nts 15 以上程序实现了 X 方向的工进和 Y 单侧的工进和延时,其中包换了并行程序的编写,也实现了各自的自锁以及两轴之间互锁。 nts 16 实现了单循环的所有动作,也完成了延时和自锁互锁以及并行序列的编程!详细程序请见程序清单。 八、自我总结 作为一个组长我尽力的为这次张老师分给我们的任务,认真落实到位。想再回忆起,真不敢想象自己是怎么度过这几天的 . 第 一天,我犯了个错误,为了逃避思考我们百度、谷歌、图书馆找资料,找到了几乎符合要求的报告,可是我们几乎抹杀了这次锻炼的机会,谢谢老师的细心教诲,让我从心里敬佩这个教学严谨的老师,一个对学生家长负责人的老师,一个对得起自己良心的老师,谢谢您张老师! 第二天,大体方案的确定和分组,经过讨论和老师的指导,我们初步预定了方案,铣削平面的液压控制系统的 PLC 设计,我把任务具体到人:1、梁俊负责液压元件(符号,作用以及原理); 2、徐炬鑫和吴俊负责液压油路机械图绘制; 3、姚子良、唐明江和我负责编程 第三天 . 第四天 . 第五天,和前两天一样,我们白天完成不了的任务继续留给晚上,晚上尽力搞定,很不想把任务留给明天,我们都想对得起这次的实验! 对于编程,以及整个任务的系统贯通和理解,以及部分资料的整理,我尤其觉得变成很难,让我觉得自己还很小很年轻或者说自己觉得自己很无知!很羡慕老师的逻辑思维以及对程序处理的数量程度,我感到望城莫及!尤其涉及到 PLC 的理解以及梯形图的编写技巧, 如 1) 串联触点较多的电路编在梯形图上方,如图 4-25 所示。 nts 17 a)电路安排不当 b)电路安排得当 图 4-25 梯形图程序 2) 并联触点多的电路应放在左边,如图 4-26 所示。图 4-26 b)比 a)省去了 0RS 和 ANS 指令。若有几个并联电路相串联时,应将触点最多的并联电路放在最左边。 a)电路安排不当 b)电路安排得当 图 4-26 梯形图程序 3) 对复杂电路的处理 桥式电路的编程 图 4-22 所示的梯形图是一个桥式电路,不能直接对它编程,必须重画为图 4-27 所示的电路才可进行编程。 nts 18 图 4-27 梯形图程序 我不得不一面学习一面消化,一面困惑,一面赞叹老师的厉害!还有涉及到梯形图序列的处理即处理顺序序列、选择序列、并行序列,我也是有点困难! 不过,通过这次学习,通过老师的这次指导,我渐渐的有了更多的对 PLC编程和液压的领悟,这在我以后的毕业工作涉及到这方面的知识会有很大作用。同时,作为一个组长,对这次试验的的负责和安排,以及同学之间的协调也是种锻炼和学习 ,我也收拾匪浅!谢谢,谢谢同学们,更感谢您,老师,您辛苦了! 九、程序清单 详细的 plc 程序,见程序附表。 nts Spitrantrucprocesses: facknGleasoemprodecadecocutter: successlotMany studies about tootFMOn the cmothe opProceedings of the ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2007 September 4-7, 2007, Las Vegas, Nevada, USA 1 Copyright 2007 by ASME ION ral bevel and hypoid gear drives are widely applied in the smission of many applications, such as helicopters, cars, ks, etc. They are manufactured using mainly two cutting e milling or face hobbing method. As well own, face milling process, traditionally adopted by the n Works, utilizes a circular face mill type cutter and ploys an intermittent index. On the contrary, during FH cess, traditionally adopted by Oerlikonand in the last s by the Gleason Worksas well, the work has ntinuous rotation and rotates in a timed relationship with the sive cutter blade groups engages successive tooth s as the gear is being cut 1. h surface representation and design of spiral bevel and hypoid gears have been carried out 2-5. ontrary, about FH process, that is the considerably re complex, only a small number of works are available in en literature 6-7. Pinion GearModule mm 4.94 Offset mm 0 Shaft Angle 90 Teeth Number 12 36 Mean Spiral Angle 35.000 Hand LH RH Face Width mm 25.4 Mean Cone Distance mm 81.05 Nominal Pressure Angle 22.5 The model validation requires the following steps. Starting from the information stored in Table 1, by means of a commercial gear design software, the geometric parameters, the basic machine settings and the cutting blade data will be firstly computed; after that, by means of the proposed model, EXPERIMENTAL VALIDATION OF A COMPUTCONTACT AND TENSILE STRESS ANALAndrea Piazza andrea.piazzacrf.it Powertrain Research and TechnoloStrada Torino 50 - 10043 OABSTRACT While face milled gears have been widely analyzed, about face hobbed ones only very few studies have been developed and presented. Goal of this paper is to propose the validation of an accurate tool, which was presented by the authors in previous works, aimed to the computerized design of face hobbed gears. Firstly, the mathematical model able to compute detailed gear tooth surface representation on both spiral and hypoid gears will be briefly recalled; then, the so obtained 3D tooth geometry is employed as input for an advanced contact solver that, using a hybrid method combining finite element technique with semianalytical solutions, is able to efficiently carry out both contact analysis under light or heavy loads and stress tensile calculation. The validation analyses will be carried on published aerospace face hobbed spiral bevel gear data comparing measurements of root and fillet stresses. Good agreement with experimental results both in the time scale and in magnitude will be revealed. 1 INTRODUCTERIZED TOOL FOR FACE HOBBED GEAR YSIS Martino Vimercati gy Centro Ricerche FIAT rbassano (TO), ITALY The authors of this paper have worked extensively on that topic proposing a mathematical model aimed to the computation of the face hobbed gear tooth surfaces 8; moreover they handled the output of this model in order to carry out a computerized design of these gears 9. Goal of this paper is to provide the validation of that tool. To this end, a comparison with experimental data will be proposed; in particular the results collected by Handschuh et al. 10 will be considered. In that reference an experimental evaluation of the performance of an aerospace spiral bevel face-hobbed gear drive, in the following named TEST, is shown. In detail, results in terms of loaded tooth contact analysis, stress calculation and vibration/noise measurement are widely discussed. The basic characteristics of the TEST gear drive are summarized in Table 1. Table 1. Basic characteristics of the TEST gear drive. DETC2007-35911ntsthe geometry of the tooth can be calculated and the gear drive performance under load can be evaluated. The main effort is devoted just to validate the model by comparing the stresses experimentally measured in the root and in the fillet area with the one numerically calculated; a qualitative comparison of the loaded tooth contact pattern will be also provided. 2 MODEL DESCRIPTION AND METHOD OF THE Table 2. Tooth geometry data of the TEST gear drive. Pinion Gear Module mm 4.941 Offset mm 0 Shaft Angle 90 Teeth Number 12 36 ANALYSIS The first step in order to build a reliable numerical model is to get a fine geometrical representation of gear tooth surfaces. This is especially true when one is dealing with complex tooth geometry such as the face hobbing one. To this aim, a series of algorithms able to compute tooth surfaces of FH gears starting from cutting process has been implemented by the authors 8. The geometry of real FH head cutter (Gleason Tri-Ac) is considered; many kinds of blade configuration (straight and curve blades, with or without Toprem) are taken into account. Then, according to the theory of gearing 11, FH cutting process (with and without generation motion) is simulated and gear tooth surfaces equations can be computed. The proposed mathematical model is able to provide an accurate description of the whole tooth, including fillet region; it also considers undercutting occurrence, which is very common in FH gears due to uniform depth tooth. The obtained tooth surfaces are used as fundamental input for a powerful contact solver which is based on a semianalytical finite element formulation 12-13. The gear drive can be study under light load by monitoring, for drive and coast side, the contact pattern and transmission error (i.e. it can be performed the commonly called Tooth Contact Analysis TCA 14). Moreover, with the aim to find out gear drive performance in the real service conditions, a set of torque values can be applied and the influence of the load on contact pattern, on transmission error and on load sharing can be accurately analyzed (Loaded Tooth Contact Analysis LTCA 15). Contact pressure and stress distribution can be also easily evaluated. 2. GEOMETRIC AND MANUFACTORING OF THE TEST GEAR DRIVE Using the data collected in Table 1 as preliminary input for a commercial software for gear design (Gleason T2000), a calculation aimed to reproduce the TEST gear drive has been attempted. Table 2 describes the obtained tooth geometry; Table 3 and 4 show the details regarding the machine setting and the cutting blades: the pinion is generated and the gear is Formate; both the members are cut by means of curved blades using a head cutter with nominal radius equal to 76 mm and 13 blade groups. 2 Copyright 2007 by ASME Mean Spiral Angle 35.000 35.000Hand LH RH Face Width mm 25.4 25.4 Outer Cone Distance mm 93.743 93.743Pitch Angle 18.435 71.565Addendum mm 4.930 2.067 Dedendum mm 2.942 5.805 Table 3. Basic machine settings for the TEST gear drive. Pinion Gear Concave Convex Concave ConvexGenerated Formate Radial Setting mm 91.451 91.451 92.364 92.364 Tilt Angle 20.099 20.099 - - Swivel Angle -25.371 -25.371- - Blank Offset mm 0.000 0.000 - - Machine Root Angle 0.154 0.154 71.565 71.565 Machine Center to Back mm -0.0722 -0.0722 -1.509 -1.509 Sliding Base mm 13.865 13.865 - - Cradle Angle 53.697 49.817 51.405 51.405 Ratio of Roll mm 2.999 2.999 - - Table 4. Cutting blades data for the TEST gear drive. Pinion Gear OB IB OB IB Blade Type Curved Curved Curved Curved Blade Radius mm 75.499 75.758 76.206 75.749 Blade Eccentric 17.832 17.633 17.738 17.846 Blade Height mm 4.363 4.363 4.374 4.374 Blade Angle 25.323 18.122 22.231 21.681 Blade Groups Number 13 13 13 13 Nominal Rake Angle 12.000 12.000 12.000 12.000 Hook Angle 4.420 4.420 4.420 4.420 Cutter Edge Radius mm 0.700 0.700 1.000 1.000 Blade Radius of Curvature mm 762.000 762.000 762.000 762.000Toprem Angle - - - - Toprem Length mm - - - - nts3. TOOTH GEOMETRY OF THE TEST GEAR DRIVE Figure 1 illustrates the tooth geometry representation obtained Due to the fact that the reference does not provide any topological data, just a qualitative comparison between the real tooth geometry and the one calculated by means of the numerical model is feasible (Figure 3). by means of the proposed model for the TEST gear drive. Figure 1. TEST gear tooth geometry representation. Figure 2 describes the fillet area by means of the trend along the face width of the Nominal Root Line NRL, of the Real Root Line RRL and of the UnderCut/Fillet UC/FL line. According to that picture it is possible to note the tooth does not show undercut. Figure 2. Details of the fillet area. 3 Copyright 2007 by ASME Figure 3. Qualitative comparison between the real pinion tooth geometry and the calculated one. 3.1 Evaluation of actual TEST gear fillet radius Starting from the picture of the real pinion tooth (Figure 3 above), a rough measurement of the radius of the fillet has been also attempted. Doing this way, referring to the toe of the concave side, a value about equal to 0.94 mm is obtained. When the same zone of the numerically computed tooth is considered, a value equal to 1.26 mm in correspondence of the maximum curvature point between the middle of inner surface and the contact surface is evaluated. The difference may be quite large (+34%) and, as it will be shown later, this evidence will have a significant influence on the fillet state of stress. As known the fillet radius is strictly related to the edge radius of the cutting blade. The value used to cut the real tooth is unknown while in the numerical model it is assumed to be equal to 0.7 mm. In order to achieve a finer correspondence, models considering other edge radius values have been built. Namely, 0.5 mm and 0.3 mm have been tried obtaining the results summarized in Table 5 and Figure 4 (the points used for the radius calculation are highlighted). It can be noted that using an edge radius equal to 0.3 mm the best correspondence can be achieved. ntsTable 5. Comparison between the photo measured and the numerical fillet radius by varying edge radius. schematization it is possible to affirm that the heel position corresponds to t = +0.5, the mid one to t = 0 and the toe one to t = -0.5; the root area is located in the range 0 s 2 while the Cutter Edge Radius mm Pinion Fillet Radius mm Photo-measured Pinion Fillet Radius mm Difference % 0.70 1.26 0.94 34.04 0.50 1.10 0.94 17.02 0.30 0.98 0.94 4.26 Figure 4. Comparison between the numerical pinion concave side profile and the photo-measured one (note that the reference systems are different). 4. STRESS CALCULATION Referring to the experimental investigation, the stresses are evaluated by means of strain gages in the fillet area. In detail, referring to the sketch depicted in Figure 5, one strain gage at the heel position in the fillet and three strain gages (at heel, mid and toe positions) in the root (i.e. on the root cone). On the other hand, with the aim to numerically compute the stresses, it is necessary to define a set of coordinates which are able to straightforwardly provide the stress measuring point on the tooth. Here, the curvilinear coordinate t which runs along the face width (-1 t +1 in Figure 6.a) and the curvilinear coordinate s which runs along the tooth profile (0 s 48 in Figure 6.b) have been defined. According to this 4 Copyright 2007 by ASME fillet one in the range 5 s 7. Figure 5. Sketch used in the TEST reference for location of the strain gages. Figure 6.a. Schematization for defining the stress measuring section along the face width of the model. Figure 6.b. Schematization for defining the stress measuring point on a generic section of the model. ntsIn Figure 7 the results of the TEST reference at a level of torque equal to 269 Nm are shown. In detail, the trend of bending stress vs time (during a whole meshing cycle) in the fillet and in the root region of the real pinion tooth is drawn. Root - Heel Root - Mid Root - Toe Max Min Max Min Max Min 222.70 -384.73 258.55 -284.06 248.90 -221.32 206.87 -256.36 247.25 -227.79 240.11 -141.01 Referring to the same tooth position, Figure 8 reports the numerical results. According to the coordinates previously defined in Figure 6, the trend of the bending stress vs time in the fillet (s = 6) at the heel section (t = +0.5) and in the root (s = 1 o 2) in the mid, toe and heel section (t = 0, t = -0.5, t = +0.5) is shown. Figure 7. Pinion bending stress vs time as reported in the reference 10. Figure 8. Pinion bending stress vs time as computed by the numerical model at an edge radius = 0.7 mm. By analyzing these graphs and by considering Table 6 which summarizes the maximum/minimum stresses for each tooth position, it is possible to affirm that the differences between numerical results and the experimental one are quite small. Table 6. Comparison between experimental and numerical analysis at 269 Nm. Fillet - Heel Max Min TEST MPa 440.57 -39.30 Model MPa 296.35 -45.37 Difference % 32.73 -15.45 5 Copyright 2007 by ASME 7.11 33.36 4.37 19.81 3.53 36.29 As stated in Table 7, similar evidences are collected at a lower level of torque (166 Nm). Table 7. Experimental vs numerical stress results. Edge radius = 0.7 mm 166 Nm Fillet - Heel Max Min TEST MPa 278.55 -27.58 Model MPa 190.00 -35.00 Difference % 31.79 -26.91 Root - Heel Root - Mid Root - Toe Max Min Max Min Max Min 139.96 -236.49 164.09 -239.25 166.85 -167.54 138.00 -287.00 176.37 -176.51 157.98 -104.71 1.40 -21.36 -7.48 26.22 5.32 37.50 It is reasonable to believe that the largest error value, which happens in the fillet-heel, is mainly due to two reasons. Firstly, it is quite difficult to find the exact correspondence between the experimental and the numerical stress measuring point; in fact, by studying Figure 9 which reports the numerical computed trend of the maximum principal stress in the fillet (s = 6) vs the position along the face width at 269 Nm, it is possible to note the value of the stress is significantly affected by the position along the face width. 050100150200250300350400450-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1Position along face width tStress MPaFigure 9. Numerically computed maximum principal stress vs position along face width in the fillet position. ntsAnother issue to investigate is the influence of the value of the fillet radius on the bending stress. In fact, as previously detected, when a cutting blade edge radius value equal to 0.7 mm is used, the numerical pinion fillet radius (1.26 mm) is quite larger (+34%) than the real one (0.94 mm). In order to achieve a finer stress correspondence, models considering other edge radius values have been built. Namely, 0.5 mm and 40.000.3 mm have been tried obtaining the results summarized respectively in Table 8 and 9. Figure 10 summarizes the trend of the error between the maximum fillet-heel stress superimposed to the error between the fillet radius vs the cutting blade edge radius. According to these results, it seems that for a value of cutting blade edge radius equal to 0.3 mm good agreement between numerical and experimental data is achieved. Table 8. Experimental vs numerical stress analysis. Edge radius = 0.5 mm 269 Nm Fillet - Heel Max Min TEST MPa 440.57 -39.30 Model MPa 322.92 -58.95 Difference % 26.70 -49.99 Root - Heel Root - Mid Root - Toe Max Min Max Min Max Min 222.70 -384.73 258.55 -284.06 248.90 -221.32176.49 -227.92 204.18 -221.57 213.33 -155.2920.75 40.76 21.03 22.00 14.29 29.83Table 9. Experimental vs numerical stress analysis. Edge radius = 0.3 mm 269 Nm Fillet - Heel Max Min NASA MPa 440.57 -39.30 Model MPa 351.98 -74.66 Difference % 20.11 -89.98 Root - Heel Root - Mid Root - Toe Max Min Max Min Max Min 222.70 -384.73 258.55 -284.06 248.90 -221.32 141.76 -196.90 159.53 -187.75 172.01 -134.15 36.34 48.82 38.30 33.91 30.89 39.39 6 Copyright 2007 by ASME 4.2617.0234.0420.1126.7032.730.005.0010.0015.0020.0025.0030.0035.0000.20.40.60.8Edge Radius mmDifference%Fillet RadiusMaximum Fillet StressFigure 10. Differences between numerical and experimental results vs cutting edge radius at 269 Nm. Similar behaviour is obtained at a level of torque equal to 166 Nm (Table 10 and 11 and Figure 11). Table 10. Experimental vs numerical stress results. Edge radius = 0.5 mm 166 Nm Fillet - Heel Max Min NASA MPa 278.55 -27.58Model MPa 201.27 -41.00Error % 27.74 -48.66Root - Heel Root - Mid Root - Toe Max Min Max Min Max Min 139.96 -236.49 164.09 -239.25 166.85 -167.54111.31 -159.91 142.98 -149.18 138.56 -96.0020.47 32.38 12.87 37.64 16.96 42.70Table 11. Experimental vs numerical stress results. Edge radius = 0.3 mm 166 Nm Fillet - Heel Max Min NASA MPa 278.55 -27.58Model MPa 219.51 -52.80Error % 21.19 -91.45Root - Heel Root - Mid Root - Toe Max Min Max Min Max Min 139.96 -236.49 164.09 -239.25 166.85 -167.5489.66 -138.22 111.69 -128.12 111.65 -83.0135.94 41.55 31.94 46.45 33.08 50.45nts35.0040.00Fillet Radius6 CONCLUSIONS In this paper the validation of a tool previously developed by the author for computerized desig
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。