【与名师对话】2015高考数学一轮复习 8.9 圆锥曲线的综合问题课时作业 理(含解析)新人教A版.doc_第1页
【与名师对话】2015高考数学一轮复习 8.9 圆锥曲线的综合问题课时作业 理(含解析)新人教A版.doc_第2页
【与名师对话】2015高考数学一轮复习 8.9 圆锥曲线的综合问题课时作业 理(含解析)新人教A版.doc_第3页
【与名师对话】2015高考数学一轮复习 8.9 圆锥曲线的综合问题课时作业 理(含解析)新人教A版.doc_第4页
【与名师对话】2015高考数学一轮复习 8.9 圆锥曲线的综合问题课时作业 理(含解析)新人教A版.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

【与名师对话】2015高考数学一轮复习 8.9 圆锥曲线的综合问题课时作业 理(含解析)新人教A版一、选择题1直线ykx2与抛物线y28x有且只有一个公共点,则k的值为()A1 B1或3 C0 D1或0解析:由得ky28y160,若k0,则y2,若k0,则0,即6464k0,解得k1,因此若直线ykx2与抛物线y28x有且只有一个公共点,则k0或k1.答案:D2若以椭圆上一点和两个焦点为顶点的三角形面积的最大值为1,则椭圆长轴长的最小值为()A1 B. C2 D2解析:设椭圆1(ab0),则使三角形面积最大时,三角形在椭圆上的顶点为椭圆短轴端点,S2cbbc1.a22.a.长轴长2a2,故选D.答案:D3(2013山西适应性训练考试)过抛物线y22px(p0)的焦点作倾斜角为30的直线l与抛物线交于P,Q两点,分别过P,Q两点作PP1,QQ1垂直于抛物线的准线于P1,Q1,若|PQ|2,则四边形PP1Q1Q的面积是()A1 B2 C3 D.解析:S(|PP1|QQ1|)|P1Q1|PQ|PQ|sin 3041.答案:A4(2013天津卷)已知双曲线1(a0,b0)的两条渐近线与抛物线y22px(p0)的准线分别交于A,B两点,O为坐标原点若双曲线的离心率为2,AOB的面积为,则p()A1 B. C2 D3解析:因为双曲线的离心率e2,所以ba,所以双曲线的渐近线方程为yxx,与抛物线的准线x相交于A,B,所以AOB的面积为p,又p0,所以p2.答案:C5(2013东北三校第二次联考)已知椭圆1(ab0)与双曲线1(m0,n0)有相同的焦点(c,0)和(c,0),若c是a与m的等比中项,n2是2m2与c2的等差中项,则椭圆的离心率是()A. B. C. D.解析:由题知m2n2c2,即n2c2m2,n2是2m2与c2的等差中项,有2m2c22n22c22m2得m2即m,又因c是a与m的等比中项,所以amc2,即ac2,选A.答案:A6(2013浙江卷)如图,F1,F2是椭圆C1:y21与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点若四边形AF1BF2为矩形,则C2的离心率是()A. B. C. D.解析:设双曲线方程为1(a0,b0),点A的坐标为(x0,y0)由题意得a2b23c2,则|OA|c,所以,解得x,y,又点A在双曲线上,代入得,b2a2a2b2,联立解得a,所以e,故选D.答案:D二、填空题7(2013河南十所名校第三次联考)圆x2y22xmy20关于抛物线x24y的准线对称,则m_.解析:由条件易知圆心在抛物线x24y的准线y1上,得m2.答案:28已知抛物线C的顶点在坐标原点,焦点为F(0,1),直线l与抛物线C相交于A,B两点,若AB的中点为(2,2),则直线l的方程为_解析:由题意知,抛物线的方程为x24y,设A(x1,y1),B(x2,y2),且x1x2,联立方程得两式相减得xx4(y1y2),1,直线l的方程为y2(x2),即yx.答案:xy09(2013江西卷)抛物线x22px(p0)的焦点为F,其准线与双曲线1相交于A,B两点,若ABF为等边三角形,则p_.解析:由x22py(p0)得焦点F,准线l为y,所以可求得抛物线的准线与双曲线1的交点A,B,所以|AB|,则|AF|AB|,所以sin ,即,解得p6.答案:6三、解答题10(2013安徽卷)设椭圆E:1的焦点在x轴上(1)若椭圆E的焦距为1,求椭圆E的方程;(2)设F1,F2分别是椭圆E的左、右焦点,P为椭圆E上第一象限内的点,直线F2P交y轴于点Q,并且F1PF1Q.证明:当a变化时,点P在某定直线上解:(1)因为焦距为1,所以2a21,解得a2.故椭圆E的方程为1.(2)证明:设P(x0,y0),F1(c,0),F2(c,0),其中c .由题设知x0c,则直线F1P的斜率kF1P,直线F2P的斜率kF2P.故直线F2P的方程为y(xc)当x0时,y,即点Q坐标为.因此,直线F1Q的斜率为kF1Q.由于F1PF1Q,所以kF1PkF1Q1.化简得yx(2a21)将代入椭圆E的方程,由于点P(x0,y0)在第一象限,解得x0a2,y01a2,即点P在定直线xy1上11(2013江西卷)如图,椭圆C:1(ab0)经过点P,离心率e,直线l的方程为x4.(1)求椭圆C的方程;(2)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数,使得k1k2k3?若存在,求的值;若不存在,说明理由解:(1)由P在椭圆上得,1依题设知a2c,则b23c2代入解得c21,a24,b23.故椭圆C的方程为1.(2)由题意可设直线AB的斜率为k,则直线AB的方程为yk(x1)代入椭圆方程3x24y212并整理,得(4k23)x28k2x4(k23)0.设A(x1,y1),B(x2,y2),则有x1x2,x1x2在方程中令x4得,M的坐标为(4,3k)从而k1,k2,k3k.由于A,F,B三点共线,则有kkAFkBF,即有k.所以k1k22k代入得k1k22k2k1,又k3k,所以k1k22k3.故存在常数2符合题意12(2014湖北武汉调考)已知平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1.(1)求动点P的轨迹C的方程;(2)过点F作两条斜率存在且互相垂直的直线l1,l2,设l1与轨迹C相交于点A,B,l2与轨迹C相交于点D,E,求的最小值解:(1)设动点P的坐标为(x,y),由题意有|x|1,化简,得y22x2|x|.当x0时,y24x;当x0时,y0.动点P的轨迹C的方程为y24x(x0)和y0(x0)(2)由题意知,直线l1的斜率存在且不为0,设为k,则l1的方程为yk(x1)由得k2x2(2k24)xk20.设A(x1,y1),B(x2,y2),则x1,x2是上述方程的两个实根,于是x1x22,x1x21.l1l2,l2的斜率为.设D(x3,y3),E(x4,y4),则同理可是x3x424k2,x3x41.故()()|(x11)(x21)(x31)(x41)x1x2(x1x2)1x3x4(x3x4)1111184842 16.当且仅当k2,即k1时,取最小值16.热点预测13(2013辽宁五校第一联合体考试)在直角坐标系xOy上取两个定点A1(2,0)、A2(2,0),再取两个动点N1(0,m)、N2(0,n),且mn3.(1)求直线A1N1与A2N2交点的轨迹M的方程;(2)已知F2(1,0),设直线l:ykxm与(1)中的轨迹M交于P、Q两点,直线F2P、F2Q的倾斜角为、,且,求证:直线l过定点,并求该定点的坐标解:(1)依题意知直线A1N1的方程为:y(x2),直线A2N2的方程为:y(x2),设Q(x,y)是直线A1N1与A2N2的交点,得y2(x24),由mn3,整理得1.N1、N2不与原点重合,点A1(2,0)、A2(2,0)不在轨迹M上,轨迹M的方程为1(x2)(2)由题意知,直线l的斜率存在且不为零,联

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论