最终.docx

大冷柜BD625门体结构设计

收藏

资源目录
跳过导航链接。
大冷柜BD625门体结构设计.rar
最终.docx---(点击预览)
大冷柜BD625门体结构设计.doc---(点击预览)
大冷柜BD625门体结构设计 - 副本.doc---(点击预览)
冷柜门面板成型图.dwg---(点击预览)
冰柜门磁封条生产.dwg---(点击预览)
冰柜门把手成型图A0.dwg---(点击预览)
cad
SW
内胆.SLDPRT
密封插槽 - 副本.SLDPRT
密封插槽.SLDPRT
总装图.SLDASM
把手.SLDPRT
箱体简易模型.SLDPRT
装配体1.SLDASM
铰链组件1.SLDPRT
铰链组件2.SLDPRT
铰链组件3.SLDPRT
铰链组装.SLDASM
镜向密封插槽 - 副本.SLDPRT
镜向密封插槽.SLDPRT
镜向门封 - 副本.SLDPRT
镜向门封.SLDPRT
镜向门端盖.SLDPRT
门体装配图.SLDASM
门外壳.SLDPRT
门封 - 副本.SLDPRT
门封.SLDPRT
门封装配.SLDASM
门封装配2.SLDASM
门端盖.SLDPRT
三维
门边框.png---(点击预览)
门外壳.png---(点击预览)
门内胆.png---(点击预览)
门.png---(点击预览)
装配2.png---(点击预览)
装配1.png---(点击预览)
2.png---(点击预览)
三维
product_11548.prt.1
product_13207.prt.1
product_17593.prt.1
product_26892.prt.1
product_30754.asm.1
product_32953.prt.1
product_34354.prt.1
product_35159.asm.1
product_3532.prt.1
product_37367.prt.1
product_41766.asm.1
product_7112.prt.1
product_7920.prt.1
_.asm.1
____.prt.1
_____-_____.prt.1
______1-1520.asm.1
______1-1886.asm.1
________1.prt.1
________2-15777.prt.1
________2-30236.asm.1
________3.prt.1
_________-_____-1101.prt.1
_________-_____-15418.prt.1
_____________-_____.prt.1
_________________.prt.1
总装图.STEP
冰柜门封条生产.bak
冰柜门把手成型图A0.bak
冰柜门磁封条生产.bak
洗衣机把手注射模总装配图1dwg.bak
压缩包内文档预览:(预览前20页/共34页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:49254299    类型:共享资源    大小:22.90MB    格式:RAR    上传时间:2020-02-11 上传人:qq77****057 IP属地:江苏
150
积分
关 键 词:
冷柜 BD625 结构设计
资源描述:
大冷柜BD625门体结构设计,冷柜,BD625,结构设计
内容简介:
装订线 毕业设计(论文)说明书目录1、文献综述21.1冷柜的发展方向21.1.1 国内外发展状况21.2 冷柜知识概述61.2.1冷柜分类及应用现状61.3本课题的主要研究内容102冷柜门体性能和材料的设计102.1 冷柜能效标准及经济性能评估112.1.1冷柜能效等级标准112.1.2不同能效等级冷柜耗电量的确定122.2冷柜发泡剂的替代研究132.2.1冷柜发泡剂R141b和R123替代R11的应用142.2.2环戊烷替代R11的应用142.2.3环戊烷替代技术的发展143、节能冷柜门体结构的设计153.1设计的考虑因素153.1.1冷柜节能考虑153.1.2冷柜成本考虑163.1.3生产工艺考虑173.1.4冷柜门体变形考虑183.2冷柜门设计步骤183.2.1 箱体外表面凝露校核183.2.2发泡门门体专用零件结构设计193.2.3门外壳设计及成型分析203.2.4门内胆结构设计与吸塑成型213.2.5门端盖设计与注塑成型244、冷柜的节能技术254.1合理选择绝热层厚度254.2增厚隔热层与真空隔热板274.3采用变频控制技术284.4制冷系统的优化匹配284.5减少电器件的热负荷294.6控制参数的优化匹配295、英文资料296、中文翻译49参考文献58感谢60参考文献611、文献综述17世纪中期,“冷柜”这个词才进入了美国语言,在那之前,冰只是刚刚开始影响美国普通市民的饮食。随着城市的发展冰的买卖也逐渐发展起来。它渐渐地被旅馆、酒馆、医院以及被译些有眼光的城市商人用于肉、鱼和黄油的保鲜。内战(1861-1865)之后,冰被用于冷藏货车,同时也进入了民用。到1880年以前,已经有半数在纽约、费城和巴尔的摩销售的冰,三分之一在波士顿和芝加哥销售的冷柜开始进入家庭使用,因为一种新的家庭设备冷柜即现代冷柜的前身,被发明了。 制造一台有效率的冷柜不像我们想象的那么简单。19世纪早期,发明家们关于对冷藏科学至关重要的热物理知识的了解是很浅陋的。人们认为最好的冷柜应该防止冰的融化,而这样一个在当时非常普遍的观点显然是错误的,因为正是冰的融化起到了制冷作用。早期人们为保存冰而作出了大量的努力,包括用毯子把冰包起来,使得冰不能发挥它的作用。直到近19世纪末,发明家们才成功地找到有效率的冷柜所需要的隔热和循环精确的平衡。其实冷柜是我国家电行业的传统产品。我国社会的冷柜保有量已超过1.1 亿台,每年更新的冷柜约400万台。2004年,我国冷柜产量为3000多万台,冷柜及冷柜压缩机出口近2000万台。在2005年,冷柜出口量继续呈现上升趋势,截止13月,我国冷柜的冷柜压缩机出口量已达500 多万台。与我国世界冷柜制造大国不大相适应的是我国冷柜的设计理念与制造技术等与发达国家相比有一定差距,这制约着我国冷柜行业的发展。欧盟2002年提出ROHS和WEEE两个指令涉及到我国众多家电行业。欧洲议会在2003年提出的使用能源产品的生态设计要求的指令草案(Eco-design requirements for Energy-Using Products,简称EUP),要求生产厂家需在产品设计及生产等多方面加以改进。1.1冷柜的发展方向1.1.1、国内外发展状况政策的导向,决定了冷柜的节能化。近几年我国冷柜生产将全面推行强制性节能标准,从2003年7月份开始,中国市场上的冷柜都必须贴上能效标识的标签。这一政府行为将促使我国冷柜业继续高走节能路线。节能是冷柜业永恒的主题,目前全球已有37个国家和地区使用节能标识。早在1994年,欧盟就规定了冷柜、冷冻箱和冷藏冷冻箱、干衣机上必须加贴能耗标签,并将节能设置为技术壁垒,抬高门槛。可见,中国实行节能政策是大势所趋。目前,国内一些著名冷柜生产企业已经依靠技术实力展开了节能市场攻略。政策方向其实反映的是用户的客观需求。2003年,国内冷柜企业将开始重新洗牌,围绕节能冷柜这一核心主题,进一步与国际标准接轨,那些高能耗、无法实现节能技术升级的产品将不可避免地要被淘汰出局。富裕的消费群体,决定了冷柜的多温区方向。正在向全面小康社会迈进的中国消费者对产品的要求从来没有像现在这么苛刻过。人们在解决温饱之后,对生活的要求理所当然要转向舒适化和高品质化。他们所要求的冷柜已经不仅仅是简单的能够冷藏、冷冻食品的容器了,而且对食品的营养提出了更高的要求。同样是应该放进冷藏室,但牛奶、蔬菜和啤酒所需要的最佳营养温度是不一样的;同样是应该放进冷冻室,但冰冻一周和冰冻一个月的食物,其需要的冰冻温度也是不一样的。对于冷柜的营养化,中国冷柜业要走的路还很长。生活频率的加快,决定了冷柜的智能化、大容积方向。中国“白领”、 “金领”层的日益壮大和生活频率的日益加快,又决定了冷柜的大容积、智能化方向。视“时间就是金钱”第一要义的他们,再也不愿意在调节冷柜档位这样的小问题上浪费时间了,他们需要更智能、更简单的冷柜产品,最好是几个按钮就能将所有问题全部解决。这将使冷柜大容积、智能化的趋势持续下去。“新生代”的崛起,决定了冷柜的个性化、时尚化方向。在中国,意识超前、引领潮流的消费群体正在不断壮大,而且他们正在日益成为时尚消费的主力军,他们的消费取向对于冷柜生产厂家来说至关重要。对于他们来说,冷柜早已不是一个简单的容器,除了要求功能先进、操作简单外,他们更注重冷柜的外观。他们相信第一感觉,他们崇尚个性、时尚、与众不同。他们的要求将导致冷柜产品的进一步“改头换面”以上四大需求决定了冷柜主流的发展方向。其实对于今天的中国消费者,特别是城镇消费者来说,价格早已不是决定购买冷柜的唯一因素,从低价竞争回归到满足用户需求的竞争上来,将是中国家电市场进一步健康发展的唯一途径。、国外随着新技术、新材料、新工艺的不断开发,家用冷柜的性能、质量、款式和品种正在迅速发展。当前,国外家用冷柜发展的新趋势是厨房化、大型(大容积)或小型化、多门温室化,多功能化、节能化、智能化,以及开发各种能源和功能多样的冷柜等。(1)经济效果的节能化当前,节能型冷柜的开发已成为家用冷柜发展的一个重要方向。例如:采用旋转式压缩机代替原来的往复式压缩机,耗电量可减少1020;采用新型隔热材料,可增加冷柜的容积和提高制冷效率;采用多重式结构门封条,提高密封性能,减少冷量外逸;采用电子控制技术,根据环境温度高低,自动调节压缩机运行时间,达到“节能”运行,可节电1015。日本在冷柜节能方面采用多项新技术,经济效果明显。如:容积为270升300升冷柜的耗电量已下降到2325KWh月,约为10年前耗电量的4050。(2)多件合一的厨房化随着住房结构的变化,近年来国外开发了一种可与厨房中其它用具配套使用的组合式冷柜。例如:台柜式冷柜,冷柜顶部可作台板使用,也可与组合式厨具配套;又如炊具组合式冷柜,上部左侧为单孔煤气灶或电磁灶,右侧是一个洗涤池,下部为冷柜,三件组合为一体,适用于人口少、厨房面积小的家庭,具有一物多用的特点。(3)方便需要的小型化容积为50升70升的单门冷藏箱或冰柜,将逐步走进办公室、宾馆客房和交通工具里。最近,美国开发的库拉特龙系列小型冷柜,其最大规格净重也只有约5公斤。满足了老年人、单身汉以及短程旅途的方便需要。(4)储量升级的大型化日本在80年代后期冷柜容积就以300升400升为主,近年来正向400升500升方向发展。美国家用冷柜的容积在400升以上的比率已占90,最大的达700升。据市场调查资料,我国家用冷柜现正趋向于200升250升发展。最近,我国扬子集团与日本东芝公司合作,联合开发245立升、355立升、450立升3种大容积冷柜。冷柜大型化适应了家用大储量的用途。 (5)精细生活的多门多温化前几年,日本出现了“三门”冷柜,即将双门冷柜原果菜盒部分制成一个独立的、用于贮藏蔬菜的蔬菜室。因多吃蔬菜和水果有益于健康和美容,带有50升60升蔬菜室的三门冷柜深受用户欢迎。据统计,近两年日本销售的三门冷柜已占冷柜产量的一半。最近,国外还出现了一种带有“冰温室”的四门冷柜,冰温室的温度的01间,使食品处于将冻而未冻状态,即处于最佳“保鲜”状态。有的冷柜还带有“解冻室”,用于冷冻食品解冻和解冻后保存,提高冻结食品保鲜质量。可以看出,近年来冷柜正向多门多温化发展。(6)种种用途的多功能化通过新技术的应用,提高和扩展了冷柜的使用性能和功能。例如:应用“快速冷冻”技术,提高食品的冷冻质量;箱内使用多用途组合式搁架,可充分利用箱内、门胆的空间,食品取存方便,且有多种用途。最近,美国库拉特龙公司生产一种新型多功能冷柜,不仅可以制冷,还可以作为食品的保温器和加热器,可用来炒菜、烘面包或热牛奶等。此外,无箱冷冻、温度切换、可调温保鲜、自动除臭等技术已在冷柜中应用。(7)自动控制的智能化近年来电子技术在家电领域中得到广泛应用。冷柜的电脑控制技术即为其中一例。例如:日本东芝公司的一种新型冷柜,在箱门、横梁、台面板前侧面上装有电子显示装置,能显示和调节冷冻、冷藏箱温度,不开门就能控制,操作方便。该新型冷柜装置了具有6个功能的IC控制板,实现多种制冷情况下的自动控制。另外,还装有报警指示器,如果箱门没有关严(或开门时间超过30秒),箱门上的传感器就会发出信号,直至把门关上。(8)生态健康的环保化目前,世界各国正在大力推行“双绿色”冷柜,即在冷柜制造和使用中不使用氟氯烃类物质。由于氟利昂会破坏大气臭氧层,威胁整个地球的生态平衡和人类的健康。日本、美国等国已全面推行无CFC冷柜。我国的青岛海尔集团、华意集团已率先推出无CFC的“双绿色”冷柜。无CFC冷柜将是未来冷柜发展的必然趋势。此外,使用各种能源的冷柜也相继问世,如太阳能冷柜、风力冷柜、煤气冷柜等;另外还有如冷藏和加热两用冷柜、手提式软体冷柜、停电不解冻冷柜、供应热水冷柜、会“说话”冷柜等,供冷柜家族日趋丰富多彩。1.2、冷柜知识概述1.2.1冷柜分类及应用现状1)冷柜应用现状冷柜是最小的压缩式制冷系统。据统计,我国目前冷柜、冷柜的拥有量近1.3亿台,而且近年来冷柜的产量、销售量均在1千万台以上,城市冷柜平均拥有率达到90.95%。我国正逐渐在为全球家电及家电零部件的生产基地,全球冷柜的制造能力进一步向我国转移。2006年,我国冷柜的产量占全球市场30%的份额。近10年来,我国冷柜的产量由1991年的470万台增加到2002年的1599万台,平均每年增长11.8%,增长十分迅速。在日本,1975年就有99%的家庭拥有冷柜,在过去20年,平均每个家庭的冷柜拥有量是1.2台。美国1990年的冷柜普及率达114%。我国冷柜的普及率在东部沿海地区为89.6%,中部地区为80.7%,西部地区为83.8%。截止到2006年,我国冷柜制造企业以海尔为代表,携手新飞、美菱、美的、容声、小天鹅、海信、TCL、荣事达树立起中国自主品牌。外资品牌中,只有西门子、博世、伊莱克斯、松下、夏普、LG、三星等在大容积冷柜市场占有优势。因此,就形成了国产品牌占据中、小容积产品市场优势与外资品牌在中、大容积领域占优势相抗衡的局面。在中、外两大冷柜阵营中,各处发展的重点有所不同。国产品牌在210L容积以下占有90%的市场份额,其余的10%则由西门子、伊莱克斯、松下和LG所占有。2)冷柜的分类、 用途分类(1)冷藏箱:冷藏箱主要用于冷藏食品,至少应有一个冷藏室,其温度保持在010之间;亦能在箱内上部由蒸发器围成较小的冷冻室,用于冻藏少量食品或制作少量冰块,其温度一般保持在职-12-6。冷藏箱一般为单门家用冷柜,容积多在170L以下。(2)冷藏冷冻箱:冷藏冷冻箱一般由冷藏室和冷冻室组成,具有冰温保鲜功能的还增设果蔬室或冰温保鲜室等;其中冷藏室的温度在0以上,适用于贮存不需要冻结的食品;冷冻室的温度应达到-18-12,适用于冷冻食品或储藏冷冻食品。冷藏冷冻箱的结构一般为双门和多门家用冷柜,把箱体分割成互不干扰的多个隔间,可以将食品分类储藏,既卫生又方便,是目前市场占有率较大的主流产品。该类家用冷柜容积多在100300L且冷冻室容积较大,冷藏室由搁架或抽屉分隔成若干空间。(3)冷冻箱:冷冻箱是指只有冷冻室的家用冷柜,温度在0以下,按温度可分为“一星级室”、“二星级室”、“三星级室”、“四星级室”,其储藏温度分别为-6、-12、-18以下,主要用来储藏、冻结食品。其结构形式大部分为上开门结构,少数为立式侧开门式。、冷柜按其结构和冷藏容积分为三类:(1)单门冷柜(又称冷藏箱),一般有效容积在45170L之间。单门冷柜结构简单、价格便宜、耗电量较小;但冷冻室容积一般都很小,而且冷冻室温度只能达到-6-12,储存冻结食品的时间较短。(2)双门冷柜(大部分都是冷藏冷冻箱),一般有效容积在100300L之间,双门冷柜的特点是既可冷藏,又能冷冻,其冷冻室的温度可达-18,储存冻结食品的时间较长。其结构一般是上部是冷冻室,下部是冷藏室。有的双门冷柜在冷藏室上部增设一个“冰温室”,其温度保持在职-30, 既保持了一定的低温,又能得到一定的湿度,可对食品进行冰温保鲜。(3)三门及多门冷柜,其容积一般在200400L以上,多属豪华型冷柜。其结构一般有冷冻室、冷藏室、果菜室和多功能转换室,有的还设有水温室。三门及多门冷柜容积大、功能全,但结构复杂、价格昂贵、耗电量也大。、按冷冻室温度分类按冷冻室所达到的温度,家用冷柜可分为1星级、2星级、3星级、4星级共4个等级,不同星级的冷冻室温度,食品贮存时间如表2-1所示。表1-1 不同星级温度计食品有效贮存期星级星标冷冻室温度(不高于)冷冻食品贮存期1星级*-61星期2星级* *-121个月高2星级(日本标准)* *-151.8个月3星级* * *-183个月4星级* * * *-18(具有速冻能力)46个月、按制冷方式分类家用冷柜制冷方式不同可分为蒸气压缩式冷柜,吸收式冷柜和半导体式冷柜等。(1)蒸气压缩式冷柜。其制冷原理是采用蒸气压缩式制冷循环,即在消耗电能的条件下,利用制冷剂(如氟利昂)在系统中蒸发时大量吸收冷柜内的热量,实现制冷的目的。(2)吸收式冷柜。吸收式冷柜的构造与压缩式冷柜类似,也分为箱体、制冷系统和控制系统三部分。其制冷系统是以液体吸收气体和加入扩散剂氢气所组成的“气冷连续吸收扩散式制冷系统”。该系统没有运动部件,因而无噪声,使用寿命长;可以采用各种热源作为动力,例如天然气、油、燃气、太阳能等。因此,此种冷柜都装有气、电两用的加热装置,该装置由燃烧器、自动点火装置、温度控制器组成。燃烧器中还带有安全装置,当燃烧器的火焰熄灭时,感受火焰温度的热电偶可自动断开燃气通路,以确保安全在制冷系统中充有三种物质,即制冷剂氨、吸收剂水、扩散剂氢。家用吸收式冷柜的主要问题是效率较低、能耗较高,故目前仅用于作战部队的卫生所、野外作业的科研工作等特殊场合,多为容积较小的单门冷藏箱。 (3)半导体冷柜。半导体冷柜又称温差电制冷冷柜,是利用半导体制冷器件制成的一种制冷装置。它是根据半导体温差效应制成的一种装置。其优点是体积小、重量轻、无噪声、无磨损、操作简单、可靠性高,列制冷剂泄漏和污染问题。但是由于半导体冷柜制冷效率低、成本昂贵、能耗高、容积又很小,故目前仅用于某些特定的场合,如汽车、实验等。 、按箱内冷却方式分类家用冷柜按冷却方式可分为直冷式、间冷式和间直冷并用式三类。(1)直冷式冷柜。直冷式冷柜又称为冷气自然对流式冷柜,它利用箱内蒸发器周围的冷空气比重大,向下流动被贮存的食品吸热,温度上升后回到蒸发器周围,使箱内空气形成自然对流。另外,箱内部分水分会在蒸发器周围冻结成霜,故直冷式冷柜又称为有霜式冷柜。 直冷式冷柜结构如图2-2所示,这种直冷式冷柜的蒸发器一般直接安装在上部的冷冻室,在下部的冷藏室内另有一个小的蒸发器,或者将冷冻室的冷空气分一部分进入冷藏室,冷藏室进行食品冷藏。直冷式冷柜具有制造容易、结构简单、成本低、制冷速度快、比较省电的特点;但由于箱内依靠空气自然流动来冷却贮存食品,因此箱内温度的均匀性不如间冷式冷柜好;而且冷冻室又需要定期进行人工除霜,对于食品的贮存质量有很大的影响,亦给日常使用带来了许多不便。另外,由于两个冷间的温度只有一个温度控制器通过控制压缩机的开、停来调节,因此箱内温度不能随着两个冷间贮存食品种类的变化而改变,以致影响了食品的贮存质量。另一方面,箱内温度受环境温度的影响较大,当冬季环境温度较低时,会出现压缩机不启动,两个冷间的温度会出现一间温度过低,而另一间温度过高的情况。为此需要增加低温热补偿装置,或采用双温控制技术(采用二位三通电磁阀加毛细管方法)。前者的方法会引起电耗量的增加,而后者则使控制系统变得复杂导致成本增加。(2)间冷式冷柜。间冷式冷柜也称为气强制循环式冷柜,它依靠风扇吹风来强制箱内冷空气对流循环,从而实现间接冷却。由于箱内食品不与蒸发器接触,故称为间冷式冷柜。间冷式冷柜的蒸发器一般位于冷冻室后部隔层中,竖立或横卧安装在冷冻室和冷藏室的夹层之间,如图2-3所示。用一个微型电风扇将冷风通过风道送入冷冻室和冷藏室,达到制冷效果。由于冷冻食品蒸发的水分被冷风带走,并在蒸发器表面冻结。 图2-2直冷式双门双温冷柜剖面图图 图2-3间冷式双门双温冷柜制冷系统图1-冷冻室蒸发器 2-冷冻室 3-冷藏室蒸发器 1-冷冻室 2-翅片式蒸发器 3-风扇4-接水盒 5-冷藏室 6-冷凝器 7-压缩机 4-热温风门温度控制器 5-冷藏室 6-冷凝器8-启动器和过载保护继电器 9-水蒸发盘 7-压缩机 8-启动过载保护继电器 9-水蒸发盘10-果菜盒 11-搁架 12-温度控制器和照明灯 10-果菜盒 11-搁架 12-制冰盒 13-温度控制器间冷式冷柜具有自动除霜装置,自动蒸发除霜,因此冷冻室内无霜,故又称“无霜”冷柜或风冷式冷柜。与直冷式冷柜相比,间冷式冷柜一般设置一个蒸发器和两个温度控制器;其中一个控制冷冻室温度与压缩机制开、停机,另一个通过改变风门的位置调控送入冷藏室的冷风量来控制冷藏室的温度。间冷式冷柜最大的特点是箱内温度均匀,冷却速度快;即使在除霜时冷冻室的温度变化不大于5,冷藏室温度变化不大于2,因此大大提高食品的贮存质量。由于间冷式冷柜采用双温度控制系统,因此各个冷间温度可以独立控制,易于实现多门多温度控制,冷柜的容积亦可以做得较大。但是由于其自动除霜系统、强制送风系统和自动调瘟系统等功能的增加,与直冷式冷柜相比,结构复杂,耗电量大,成本提高了10%以上。(3)间冷、直冷并用式冷柜。间冷、直冷并用式冷柜也称为冷气强制循环及自然对流并用式冷柜,这种类型冷柜查将直冷式和间冷式的特点结合起来,冷冻室采用间冷式,冷藏室采用直冷式。1.3本课题的主要研究内容本课题研究的是新飞BD-625节能冷柜的门体结构设计。通过合理的结构设计,不仅有利于减少公司的开发成本,保证按期完成项目,而且可以在设计过程中发现问题,及时解决问题,使得项目顺利通过验证,及时量产;公司现在生产的冷柜存在一些结构上的问题,如工序复杂等问题,本设计的目标在于解决结构上的问题,降低工艺难度,提升装配效率,即降低生产成本。本次设计的创新之处为,引用国内较为先进的材料(发泡剂,门体材料等)对原有设计进行升级,以达到提升制冷速度,和节能的功效。冷柜门体总体结构设计完成后,需要验证结构件的可靠性以及装配的合理性。通过这个过程发现本课题研究的冷柜在实际生产制造时存在的问题,及时解决问题,达到相关的标准要求后进行批量生产,提供给客户。2冷柜门体性能和材料的设计家用冷柜的箱门由门面板、门内胆、磁性门封和手柄及铰链(门折页)组成。其中,门面板与箱体外壳一样;门内胆与箱体一样;磁性门封由塑料门封条(乙烯基塑料挤塑成型)和磁性胶条(在橡胶塑料的基料中渗入硬性磁粉挤塑成型)组成,为了节能有些低温水箱还另设橡胶气囊二次门封。为了达到节能的目的,门体的设计过程中需要结合整个冷柜的参数进行系统设计,具体计算如下。2.1 冷柜能效标准及经济性能评估2.1.1冷柜能效等级标准冷柜是家用电器中的主要耗能设备,OECD国家家用冷柜的能耗是火车耗电量的3倍;在日本,冷柜能耗占住宅耗电量的17%;在泰国,这一比例是20%;1995年我中国家用冷柜的耗电量所占比例为32%,上述情况都说明了冷柜是耗能大户。从节能、环保和促进技术进步等角度出发,2003年国家颁布了GB12021.2-2003冷柜能效标准。冷柜的耗电量限定会按下式计算: (2-1)式中: 耗电量限定值,kWh/24h;M参数,由表2-2查得, kWh /L;N参数,由表2-2查得,kWh;调整容积,L。冷柜产品的实测耗电量应不大于值,否则,为不合格。对于具有可变温间室的冷柜,分别测试不同设定温度条件下的耗电量,各测试结果均应满足相应类别的耗电量限定值要求。表2-2 M、N取值序号类别M/ (kWh /L)N/(kWh )1无星级室的冷藏箱02212332带1星级室的冷藏箱06111813带2星级室的冷藏箱04282334带3星级室的冷藏箱06242235冷藏冷冻箱06972726冷冻食品储藏箱05301907食品冷冻箱0567205该标准不仅规定了冷柜在标准状况下耗电量限定值,并且规定了冷柜的能效等级为15级,其中1级、2级为节能产品,1级最节能,5级为能效合格产品。按照冷柜在标准状态下实际耗电量与限定值的比较,比值小于0.55的为能效1级,也就是说,在通常情况下能效1级冷柜的耗电量相当于该型号冷柜标准允许耗电量的55%,即节能45%以上;比值0.560.65为能效2级冷柜;比值0.660.80为能效2级冷柜;比值0.810.90为能效4级冷柜;能效5级冷柜为能效水平刚满足标准的合格产品;比值大于1的产品为不合格产品,国家标准强制不允许其进入市场。1级是企业努力的目标,约占当前产品总量的5%;2级是代表节能产品的门槛,约占当前产品总量的20%;3、4级代表我国的平均水平,约占当前产品总量的50%;5级代表能效限定值,是未来淘汰的产品,约占当前产品的25%。冷柜的能效主要取决于压缩机的EER和箱壁的保温性能两个因素。冷柜能效标准的出台,对于规划冷柜市场,统一冷柜用能效标准,提高冷柜融整体效率水平,挖掘制造企业开发超级节能冷柜的潜力等方面具有积极意义。2.1.2不同能效等级冷柜耗电量的确定 我国冷柜以中等容积(161L230L)需求最为旺盛,它们大部分耗电量为1.21.4 Kwh/24h.本设计中的冷柜为大型双开门冷柜,参数为按照GB12012.2-89家用冷柜电耗限定值及其测试方法的规定,目前冷柜的能耗水平绝大部分在国际规定值的80%90%。与发达国家同类产品相比,我国冷柜能耗水平是比较高的,据初步分析,与发过国家相差表20%,也就是说,我国冷柜的节能潜力较大。按报批搞的能效等级划分方案,可得到表2-3的结果,由此可确定各个能效等级的耗电量,即1级为204.40kWh/a,2级为290.18kWh/a,3级为339.45kWh/a,4、5级可不考虑,因为这类产品通常在市场上不允许出售。表2-3 冷柜不同能效等级的耗电量节能措施耗电量(kWh/24h)计算能效指数(%)能源效率等级最佳的运行控制0.4434.31(55%)真空板0.5946.11结构系统优化0.6550.81使用节能新工质R600a0.7659.42(55%65%)使用高效压缩机0.8364.82使用较高效压缩机0.9372.73(65%80%)适当加厚隔热发泡层5mm1.0884.44(80%90%)改进门封结构1.1791.45(90%100%)改进发泡材料和工艺1.30101.65注:基准冷柜耗电量2kWh/24h;各节能措施由下至上依次累加。1级表示能效最高;能源效率等级一栏括号内数据为标准报批搞相应等级要求的能效指数。2.2冷柜发泡剂的替代研究随着CFCs的禁用,从2007年起,国内市场的冷柜、冰柜产品将进入无CFCs时代。这不仅要求冷柜制冷剂不含CFCs,同时也要求发泡剂不含CFCs。理想的发泡剂必须具备下列一些特性:(1)不能与塑料发生反应;(2)必须充分溶于液态塑料,但不溶解固态塑料;(3)使用液态发泡剂,必须有适宜的沸点和蒸气压力;(4)隔热泡沫塑料要求发泡剂具有低导热性,以便最终产品有高绝热性能;(5)要求发泡剂不可燃,并且有助于使最终产品获得良好的阻燃性能。众所周知,冷柜四周的隔热材料是现场注入发泡剂形成的硬质聚氨酯泡沫塑料,而用作发泡剂的R11已被国际组织列为是对臭氧层危害最大和禁用的品种之一。世界上很多化学品公司和制冷器具生产厂商纷纷开展研究工作,寻找R11发泡剂的替代物质。进入20世纪90年代,冷柜硬聚氨酯发泡剂替代品的研究引起各国的高度重视。我国在加水发泡技术方面有一定的基础,广东省有关单位早在20世纪70年代曾做过一系列的加水发泡剂试验,取得过替代5%的效果,积累了丰富的经验。目前替代物质的研究工作也进展顺利,浙江省氟化式技术开发所已经建成小批量生产R123和R141b的装置,可供各生产、科研单位使用。在冷柜门体的生产过程中,发泡剂的特性与生产系统的干燥部分设计有关。为了通过预分配混合原料提高发泡质量,使用R141b发泡剂预先使门体在敞开式模具中发泡。R245fa发泡剂较低,能够迅速产生发泡反应,但是它不适合开模式生产。目前,几乎所有主要硬泡行业都完成了向ODP为零的发泡剂的转化,在多数都依赖R141b作为主要的第一代替代物,替代目前禁止的CFCs。虽然作为发泡剂R11具有较好的特性,但其对臭氧层的破坏性使其使用受到一定限制,已被列为淘汰之列。2.2.1冷柜发泡剂R141b和R123替代R11的应用 R141b和和R123的物理性能(沸点、蒸气导热系数及蒸发潜热与)R11相似,其中R141b的能量效率比较高,成本比R11约高出2030倍,ODP值0.11、GWP值为0.12,具有可燃性;R123能量效率相对低些,成本价格要比R11高出约50%,对臭氧的破坏力相当小,且不可燃。此外,由于它们的分子量不同于R11,为了取得相同的发泡率,R141Br 用量较少,而R123则要多用些。另外,R141b对冷柜内胆ABS板村有腐蚀,需采用双层拱挤板或改性ABS板,从而造成运行费用的增加;R141b泡沫物性稳性差,需要对工艺进行改进才能保证使用。为了更好地利用R123较低的消耗臭氧层潜能值和不可燃性的特点,以及R141b较好的发泡效率、;较低的溶解能力和成本,美国杜邦公司研制出两种化合物的混合物Formacell-R。它将两者的优点集于一身,其分子量和膨胀率都是与R11相似,且不可燃,对臭氧层的破坏力为R11的1/20。2.2.2环戊烷替代R11的应用首先是德国采用了环戊烷方案,随后意大利、荷兰、英国和北欧的瑞典、丹麦、挪威等国部分采用了环戊烷替代R11方案。到目前为止,这些国家采用环戊烷替代R11的方案已有多年,有着丰富的实践经验,最典型的是大型冷柜厂德国津根的博士-西门子公司的制冷器具厂。在日本,虽然前些年以R141b为主要方案,但近所来很多冷柜厂也改为环戊烷方案。日本松下、日立、三洋人个冷柜厂都建立了环戊烷发泡生产线;新飞引进德国亨内机公司环戊烷发泡剂生产线实现每年60万台的生产能力,科龙、海尔都实现了环戊烷发泡生产线的改造。在美国,仍采用R141b作为冷柜发泡剂,但对于进口环戊烷发泡的冷柜并不加限制。因此,环戊烷替代R11作为长期方案,可以获得世界各国的承认和普遍采用。2.2.3环戊烷替代技术的发展环戊烷替代方案虽然被料多采用,但由于其导热系数比R141b高、资源有限、价格高等因素,因而采用正、异戊烷的方案已开始实施。正、异戊烷的发泡强度和流动性都较好,导热系数虽高一些,但资源丰富、成本低,博士-西门子冷柜厂现用正、异戊烷的混合物替代环戊烷作发泡剂,能够降低成本8%;对于用正、异戊烷发泡与R600a作制冷剂的搭配,冷柜的整机能耗可保持在R11和R12的水平。这对我国是一个可喜的信息,因为我国目前环戊烷要靠进口,价格很贵,而正、异戊烷的资源丰富,应当努力开发这种方案。自1992年以来,欧洲在短期内实现了环戊烷代替R11发泡剂的改造,但由于种种原因这种发泡剂没有在北美自由贸易协定(North American Free Trade Agreement,NAFTA)地区被成功应用。另一种名为R245fa的发泡剂被广泛应用,它主要适用于受到经济因素限制而无能力使用环戊烷的中小型工业。国外试验表明,HCFCs替代材料的绝热效率只有CFCs的90%。为了保证原有绝热性能,就必须增加冷柜的壁厚,但冷柜的外形尺寸又不能随意改变(必须与建筑尺寸和传统布局相适应),因此,只能以牺牲冷柜内部容积为代价。发泡材料的相溶性也是一个关键问题。通常冷柜内胆使用的是ABS或SB/HIPS工程塑料。HCFCs,尤其是R123比R11有较强的溶解作用,会使塑料内胆产生破裂或皱缩。各生产厂商正在积极探索途径,期望能降低HCFCs的溶解能力;或在塑料表面镀上一层其他防护材料;或者试用新材料(如聚碳酸酯类)做内衬等等。但目前尚未见到有正式结果的报道。3、节能冷柜门体结构的设计3.1设计的考虑因素3.1.1冷柜节能考虑近年来,全球“电荒”、“油荒”频发,欧美经济强国除了在全球范围内积极扩大能源产地外,对家电能耗要求也越来严格,甚至利用能耗标准作为技术壁垒来制约包括中国在内的发展中国家对其家电出口;在国内,节能也已成为众多冷柜制造商的一个重大竞争点,冷柜是否节能直接关系到产品开发及日后产品销售的难易程度。低冷柜能耗可以从减少冷量泄漏和提高循环效率两个方面考虑。在冷柜门体设计过程中,主要可以从以下两方面有效地减少冷柜的能耗.(1) 选择合适的泡层厚度降低冷量泄漏一个最直接方法就是增加冷柜发泡层厚度。一般地说,随着冷柜发泡层厚度的增加,冷柜能耗逐渐降低,但增加到一定程度后,其节能效果越来越不明显。而且随着发泡层厚度的增加,冷柜的材料成本增加、有效容积下降。因此,产品开发过程中,需要综合考虑能耗、成本和容积等因素,选择合适的发泡层厚度。(2) 采用高效压缩机压缩机的能效比COP对冷柜的能耗影响显著,任何节能冷柜的开发,都需要采用高效压缩机。根据高效压缩机COP值的差异,可将其分为两类:一类是COP值为1.31.5的普通高效压缩机,国内生产,成本较低,广泛使用在普通节能冷柜中;第二类是COP值为1.61.8的高效压缩机,大多由国内合资公司生产或从国外进口,成本较高,只应用在超级节能冷柜上。3.1.2冷柜成本考虑企业要生存发展,就必须赢利。研究表明,尽管设计费用只占产品总成本的5% ,却决定了产品总成本的60%70%。因此,产品开模前(一旦开模,产品的大部分成本将被锁定而难以改变或改变费用很大) ,在设计图纸上通过设计师的精心计算、优化设计,对降低生产成本具有重要意义。(1) 零部件及其设计要素的标准化标准化其实是一种“软件复用”,使得产品开发不必从零开始,直接使用现有零部件或进行部分修改就可设计出新的产品。企业可进行如下标准化工作:把优选零部件形成标准件或通用件,在许多型号的冷柜上通用;固定冷柜的宽度系列,让内部附件(包括抽屉、层架、门搁架等)在同宽度系列的冷柜可相互借用;将箱体内腔、侧板、后板、门内腔、门面板等主要开模件的局部结构形成通用设计要素,在设计工作中强制遵循。标准化工作的实施与加强,大大降低了新开模具的成本,缩短了开发时间,减少了设计失误;还减轻了开发人员的工作量、提高了工作效率,让其有更多时间和精力投入到创新工作中。(2) 简单化设计一般说来,结构和功能过于复杂的产品,不轻易会受用户喜爱的。此外,如果零件结构太复杂,设计人员制图将颇费力气;模具师不易理解设计意图,零件成本和加工难度随之加大,还降低了零件的质量稳定性,容易产生缺陷。简化零部件结构,不但可以减少开模费用、提高结构可靠性、节省材料成本,还简化了用户操作。产品的功能也同样需要简化,功能既有正面质量、又有负面质量;过多的辅助功能,会影响主要功能的体现、模糊产品功能卖点,加大结构复杂性。而且,每项功能都需要增加成本,如果功能的增加不能带来价格的适当提升,企业将得不偿失。(3) 材料替代、用量减少针对具体应用选择合适的材料是设计师的一项重要责任,也是设计成功的前提条件。冷柜的结构变化其实并不多,材料的选用对其性能和成本影响非常大。结构设计师应该对所用材料的性能和成本有清楚的了解,尽量采用性能合格的低廉材料,既满足产品的质量要求,又避免质量过剩。当前,采用塑料件代替金属件已成为冷柜企业降低生产成本的一个重要竞争策略。与金属材料相比,塑料具有成本低、重量轻、电绝缘和耐腐蚀等优点。且塑料材质多样、设计结构多变,使其具有更理想的设计特性。既避免了金属件必需的价格不菲的二次加工(如冲孔)和表面处理(如喷涂) ,又减少了制造对设计的限制、扩大了设计自由(塑料件可以设计成复杂的形状) 。因此,随着塑料件质量的不断提高,冷柜中应用的塑料件越来越多,除了一些重要的制冷件(蒸发器、冷凝器) 、外观件(门面板、侧板) 、支撑件(压缩机托板)等外,其余大部分都是塑料件,大大降低了冷柜的材料成本。材料减薄是另一种直接降低成本的方法。在保证内胆能抵抗发泡压力与热变形的前提下,企业适当的对冷柜内胆板材进行减薄,有效地抵御了原材料价格上升的不利因素。此外,取消一些对外观要求不高零件的表面处理也可以降低成本,例如:冷柜后板原来使用喷涂钢板,现将其改为镀铝锌板、不喷涂,成本得到了较大程度的降低,目前已在冷柜企业中大量推广。3.1.3生产工艺考虑产品设计过程中,还应该考虑生产工人操作是否方便、设计是否具有防呆功能;冷柜发泡过程中会出现空泡、漏泡等质量缺陷,发泡后会出现门体收腰变形等工艺问题,需要在设计阶段就加以考虑。(1) 防呆设计由于冷柜是流水线生产,工人并没有太多的时间去仔细检查手中的零件是否正确、装配是否正确。如果设计师考虑不周,正确的装配方向难以识别、又没特别设计防呆特征,忙乱的生产过程中就会很容易出现错误装配、造成返修甚至报废,给企业造成不同程度的损失。为了防止误操作的发生,可在制件上设计一些防错特征,保证装配方向不正确的时候,零件装配不上;如果受结构所限,不能添加防错特征时,就应该增加标志(如文字、图形)指明正确的装配方向。另外,将零件设计成对称结构也可以起到很好的防呆作用。(2) 防漏泡设计由于冷柜的形状不规则,准确的发泡剂用量往往难以计算出来,需要在正式生产前通过试模进行调整。跟发泡剂用量有关的工艺问题有空泡和漏泡。空泡是指冷柜局部区域(尤其是一些狭窄的角落)因缺少泡料而形成空穴,其主要原因是发泡剂用量不足或结构透气性差。空泡不会影响冷柜外观,其处理方法比较简单,只需要适当增加泡量或增强结构的透气性(在箱内胆、后板、后底板等零件的结构死角处设计小于1mm的排气孔) 。漏泡是指泡料在较大的发泡压力下从冷柜密封不好的孔隙挤出形成形状不规则的溢出物。由于漏泡处往往位于难以密封的死角处,难以清理,严重时会影响冷柜外观甚至造成报废。解决漏泡的唯一方法是增强冷柜的密封性。最常见的密封结构是利用发泡剂的高粘度性、钣金件和塑料件的弹性变形进行过盈配合,采用迷宫式密封结构,依靠该结构的迂回来增大流动路线距离及阻力形成良好的密封。设计之外的工艺补救方法是:在所有可能出现漏泡的角落、缝隙处粘贴海绵胶条或免水胶纸,在人手难以触及的死角注入热熔胶。3.1.4冷柜门体变形考虑门体在使用过程中,泡层会冷却收缩,由于门内腔侧温度较低、且其刚度低于门面板侧的刚度,门内腔侧的收缩量会大于门面板侧的收缩量;且由于门体中间部分缺少约束,收缩最强烈,门体就会产生收腰变形。虽然这种收腰变形普遍存在,但由于一般的门体体积较小,门面板刚度足够,其收腰变形量较小,不会产生难以控制的质量问题。如果门体较大,必然产生相当大的收腰变形,使得门封与门内腔、箱体不能紧密配合,造成箱内冷气泄漏,使得产品能耗难以达标。解决门体变形的方法是对门面板结构进行优化、对门体进行结构加强(如增加加强铁) 。3.2冷柜门设计步骤3.2.1 箱体外表面凝露校核箱体外表面凝露校核也分冷冻室和冷藏室进行。(1) 冷冻室校核冷冻室绝热层厚度最薄处在顶层,计算时取箱外空气对箱体表面的表面传热系数,传热系数,环境温度为,箱内空气温度为,则外表面温度为:露点温度为,由此可见,冷冻室绝热层厚度最薄处的顶表面温度大于露点温度,故不会凝露。(2) 冷藏室校核冷藏室两侧面和底面的绝热层厚度最薄,因此只要对它们进行露点校核即可。计算时取传热系数,环境温度为,箱内空气温度为,其余参数与冷冻室校核计算相同,则外表面温度为:可见冷藏室两侧和底面同样不会凝露。根据以上计算可知,本冷柜设计所采用的上述绝热层厚度在外表面不会出现凝露现象。3.2.2发泡门门体专用零件结构设计 BD-625卧式冷柜的发泡门(图2.11)是由左右两个门端盖、门外壳、门内胆及灯安装盒通过密封拼接装配形成的封闭盒体,经由注入一定量的泡料发泡最后形成一个具备一定强度及支撑能力的门体。发泡门作为冷柜箱体的密封结构,其保温性能及密封性能的好坏直接影响整个冷柜的制冷能力,所以在门体设计时,必须首先保证发泡门体的泡层厚度满足保温性能,门体的密封性能也要满足要求。图3.1发泡门门体 BD-625冷柜门体的设计流程,分为三大模块:专用件设计,包括门外壳、门内胆及门端盖;标准件的选择,如,铰链和把手;通用件则同样选用其它型号通用的胶带、螺钉等。3.2.3门外壳设计及成型分析 BD-625卧式冷柜的门外壳为了与箱体外壳的设计统一,也选用了冷轧板Q235A作为材料,不仅保证了强度、硬度,还具有易于密封及与泡料粘合的特点。设计门外壳初期考虑了使用塑料成型的方法制作成塑料门外壳,但是由于塑料存在大的收缩率会导致变形大,而且强度不能够保证,同时注塑模具成本相对比较高,所以不予以考虑。 门外壳前后边上进行了折弯,目的是提高边缘的强度,并且预留一个平面与门内胆进行拼接贴合,同时便于扣紧门端盖(图2.13)。BD-625型号卧式冷柜具体设计尺寸见图纸。 门外壳是在成型线上进行加工制作的,经过了以下工序:冲孔折边折弯。如图13所示,铰链孔、灯线孔和拉手安装孔都是标准化的通孔,位置尺寸及结构参考其它机型。图3.2装配门端盖后的门外壳3.2.4门内胆结构设计与吸塑成型 冷柜的门内胆(图2.14)要求对温度的适应性好,不但在高环境温度下不产生形变,在低温的条件下也要保持箱内壁的平坦,冷柜的内胆一般采用丙烯腈一丁二烯一苯乙烯(ABS)和耐氟高抗冲聚苯乙烯(HIPS)材料直接成型法制成。图3.3门内胆 这些材料易于一次真空加工成型,且无毒、无味、耐腐蚀、重量轻,制成的内胆色泽美观,而且可以与发泡剂粘合不离泡。但缺点是耐热性能较差、硬度较低,易划伤,使用温度一般不得超过70摄氏度。 发泡门门体对冷柜的密封性很大程度依赖于装配在门内胆上的门封的密封性能。BD-625冷柜的门封结构设计参考其它机型,故门内胆与门封的装配要求如图2.15所示,以保证门封紧紧固定在门内胆的边缘上而不脱落。图2.15门内胆与门封装配局部示意图 门内胆在表面上设计了一系列的条状纹路,其作用是减少变形以及方便门体发泡;如图2.16所示为门内胆与门端盖及门外壳的装配,在预装过程中门内胆并没有将门端盖及门外壳进行固定,而是在门内胆的边缘位置预留了0.5mm-1mm的搭接量用以与门端盖和门外壳进行搭接。图3.4门内胆与门端盖、门外壳装配 发泡时以门内胆和门端盖、门外壳接触的面作为分型面,注入一定量的泡料之后合上模具即可得到门内胆与门端盖、门外壳等零件拼接到一起的门体,他们通过泡料的粘合最终装配在一起了。关于BD-625型号的门内胆设计参数见图纸。 目前冷柜门内胆的成型工艺,主要有凸模真空吸塑成型和凹模真空吸塑成型。真空吸塑成型原理如图2.17和图2.18所示,采用凹模成型,通过辅模对板材的拉伸,使用较薄的板材即可吸塑出合格塑件,而采用凸模成型的板材比凹模成型的板料要厚出许多,基于板材成本和外观品质考虑,采用凹模成型具有很高的经济性。图3.5凸模真空吸塑成型图3.6凹模真空吸塑成型3.2.5门端盖设计与注塑成型 门端盖(图2.19)是冷柜门体上的关键部分,是用来插装固定门外壳的部件。由于门端盖的结构比较复杂,属于薄壁壳体件,通常采用工程塑料ABS;同时门端盖频繁开、关,内部常需要布置加强筋来增加门体强度,加强筋布置的好坏程度关系到门端盖的使用寿命、模具的使用寿命和生产效率。图2.19门端盖 参考原有的冷柜设计经验,BD-625冷柜的基体厚度设计为3mm,四周翻边厚度2mm。为了提高端盖的刚性,在其内侧等间距增加了9条加强筋,同时在将要与门外壳装配的三个面上加上一圈加强筋,以增加四周的强度,同时易于与门外壳装配。BD-625型号冷柜的设计参数见图纸。4、冷柜的节能技术4.1合理选择绝热层厚度针对冷柜箱体的不同部位、箱体内外温度差的大小,同时考虑箱体外形尺寸的合理性来分配发泡层厚度。如对于间冷式冷柜,冷藏室箱胆背部设有送风道,此处与外部温差较大,发泡层设计较其它部位厚,达到64mm;同样,冷冻室底部由于有压缩机的影响,其发泡层厚度也设计得较厚,达到74mm。另外,在选择合适的发泡层厚度的同时,还要注意选择绝热性能较好的发泡剂,否则发泡层将会很厚,这将直接导致材料成本的增加和冷柜外形尺寸的急剧加大。前面已经提到过目前发泡剂的替代现状,环戊烷是比较理想的替代剂,它的气体热导率比较低,成本低,室温下液态,目前可批量供应,由下表的比较中也可以看出。表4-1环戊烷和异/正-戊烷发泡沫导热系数与扩散率的比较气体导热系数23时扩散率沸点10(mW/K)(/s)环戊烷 4911.56.2异戊烷 2813.13.5正戊烷 3613.44.0表4-2 环戊烷和异/正-戊烷发泡沫导热系数与温度的关系试验温度()导热系数mW/K环戊烷发泡沫异/正戊烷发泡沫019.019.81019.520.62320.521.7 表4-3 气体导热系数10环戊烷21.8异戊烷21.6正戊烷21.8表4-4发泡剂性能比较产品CFC-11HCFC141bHFC134aCyelopentane化学分子式分子量13711710270沸点()2432-2750气体导热系数(mW/K)7.48.612.411在空气中燃烧极限(体积之比)%无7.316.0无1.48.0ODP(臭氧层损耗潜能)1.00.1100HGWP(全球温室效应潜能)1.00.120.250.01闪点()无-204.2增厚隔热层与真空隔热板冷柜从门封、箱体漏入的热量分别占总漏热量的15%、85%,加大隔热层厚度无疑是较简便的节能方式。增厚5mm可以节能10%左右,但是过分加厚对消费者也是难以接受的。近几年来,使用的真空隔热板,可节能10%左右。这一技术改变了靠加厚“发泡层”实现保温的方式。通过使用真空板,能有效降低导热系数。它封装在高气密性保护膜中,其导热系数在310 mW/mK之间,真空绝热板设计在冷柜的内、外壁之间用常规的聚氨酯泡沫密封形成复合绝热层,几年前日本夏普公司已形成小批量生产,并在400L大型冷柜上应用,其机体壁厚仅2.54cm,现在欧美一些家电行业也进入商业生产之中。它的主要特征如下:a、空绝热板泡沫开孔率达100%,因为闭孔中的气体可通过泡壁窗口扩散到周围的开孔泡沫中,并使真空板的导热系数升高。b、真空绝热板泡沫孔结构精细,其开孔泡沫直径为100120微米。c、高性能访透气性保护膜,它在15年内保持内压小于1毫巴,这样才能保证内压始终低于临界压强,保护膜具有很强的防水渗透性能,它用铝箔和塑料薄膜复合而成,铝箔很薄,因为它要尽量减少边缘损失,并防止形成表面鸡皮状的微孔。微孔密度越低就能保证铝箔层复合材料高的防透气性能。d、真空绝热板中有吸附性能很强的吸气剂,它能消除板内遗留的氧气、氮气、二氧化碳和水蒸气,并保持开孔泡沫导热系数7.0W/MK左右,内压强在15年内低于0.1毫巴。e、由于使用真空绝热板,箱体壁变薄,对聚氨酯泡沫要求流动性好,保证真空绝热板和机壳内胆其充填性和粘合性好。通过使用环戊烷作为聚氨酯发泡剂的替代,并用真空绝热板作为复合层绝热,将使能耗水平再降低25%,并减少壁厚,降低成本,并用是在不对现有箱体设计及制冷系统作大的改动的前提下。今后欧美一些化工公司还正在研究开发气凝胶形式的加工技术,即密度在80400 kg/之间的基于聚异氰酸脂和聚氨酯的气凝胶,用于真空绝热板中使其压力低于10毫巴的情况下,密度为150 kg/的气凝胶块的导热系数为7mW/mK。4.3采用变频控制技术变频冷柜主要是通过变频技术来调节压缩机的转速,它通过提取冷柜各间室温度与设定温度的差值,作为连续控制信号输入到变频器中、从而实现自动改变输出交流电频率的目的。普通冷柜上制冷压缩机的转速在3000r/min左右,而变频的转速可在20004000r/min内变化,能较好地适应热负荷的变化。如Danfoss公司开发的TLV型可调速压缩机内置的电机控制装置可将压缩机的转速从4500r/min降到2000r/min,节能40%,并可降噪5dB(A)。变频冷柜能使冷柜处于最佳效率状态下运行,极大提高了冷柜的制冷效率并节约能源。4.4制冷系统的优化匹配在制冷理论中我们知道,过高的冷凝压力及过低的蒸发压力都会引起单位制冷量和制冷系数的减少,同时由于传热温差的加大,也会增加箱体热负荷,对能耗影响较大,但在实际设计中,往往由于安装空间及成本的限制,不可能选用过大的换热器。因此在冷柜的设计中,蒸发器、冷凝器的应力求选用高效的蒸发器和冷凝器,通过理论计算和试验验证的方法,合理匹配传热面积、可以很好地避免过低的蒸发压力和过高的冷凝压力,能够达到很好的节能效果。4.5减少电器件的热负荷冷柜的电器件较多,这些电器件的使用除了直接增中耗电量外,有些部件由于安装在内部,还会引起热负荷的增加,即双重影响了耗电量,因此冷柜设计时应尽量减少电器件的使用和降低电器件的消耗功率。在一些传统的冷柜中,风道系统、排水系统中普遍设置了加热装置以免其中的凝结水结冰现象。因此,在冷柜的设计中,可以通过结构设计尽量减小甚至避免电器件对热负荷的影响。BCD-248间冷式冷柜通过冷藏室风道四周发泡层厚度的合理分配,既考虑了蒸发器对加气管的影响而可能引起的结冰,又考虑了回风道与背板处相互传热而可能产生的凝露以及时系统工作时冷凝器对回风道内温度的影响,同时还最大限度地减小了化霜器工作时产生的热量对冷冻室温度的影响。4.6控制参数的优化匹配冷柜的控制参数主要指冷柜的开机时间、停机时间以及开机率,而这些参数又与压缩机的制冷量、COP以及箱体保温性能等有密切关系。对于一定热负荷的箱体,选用冷量小的压缩机,可减小其输入功率,但由于开机率增加了,冷柜能耗不一定能降低;而开机率一定时,如果开机时间过长,也不利于食品储存,如果开机时间过短,由于压缩机启动功率较大,频繁的启动就会带来能耗的增加。因此,在冷柜的设计中,我们必须综合考虑箱体的热负荷、压缩机的制冷量及效率、冷柜的工作周期及开机率等相关参数,使之达到最佳匹配状态。5、英文资料Numerical simulation of air flow and heat transfer in domestic refrigeratorsO. Laguerre , S. Ben Amara a, J. Moureh , D. FlickUMR Genie Industriel Alimentaire INRA-INAPG-Cemagref-ENSIA, BP. 44, 92163 Antony Cedex, FranceUMR Genie Industriel Alimentaire INRA-INAPG-Cemagref-ENSIA, 16 rue Claude Bernard, 75231 Paris, FranceReceived 24 February 2006; received in revised form 17 October 2006; accepted 21 October 2006Available online 15 December 2006Abstract:This work was carried out in order to study heat transfer by natural convection in domestic refrigerators without ventilation. Only the refrigerating compartment was studied for three configurations: empty refrigerator, refrigerator equipped with glass shelves and refrigerator loaded by product. Both experimental and numerical approaches were used. The simulations were carried out using CFD (computational fluid dynamic) software by taking into account or by neglecting radiation heat transfer. The following conditions were assumed: constant evaporator temperature, three-directional laminar air flow. Numerical results show temperature stratification in the refrigerating compartment (warm zone at the top and cold zone on the bottom) for all configurations. A comparison of the calculated air temperature and the experimental values shows good agreement when radiation is taken into account. 2006 Elsevier Ltd. All rights reserved.Keywords: CFD; Simulation; Closed cavity; Refrigeration; Domestic refrigerator1. IntroductionDomestic refrigerators are widely used in industrialized countries. There are approximately 1 billion domestic refrigerators worldwide (IIR, 2002). In France, there are 1.7 refrigerators per household (AFF, 2001). In developing countries, the production is rising steadily: total production rose 30% in 2000 (Billiard, 2005). Some indications show that food is often stored in domestic refrigerators at temperatures that are too high. In refrigerators without ventilation, strong temperature heterogeneity is often observed, with warm zones (sanitary risk) and cold zones (freezing risk) due to very low air circulation. For this type of refrigerator, widely used in Europe and in developing countries, heat transfer occurs principally by natural convection.emperKnowledge of air tature and velocity profiles in a refrigerator is important for food quality control. Indeed, if the consumer knows the position of warm and cold zones in the refrigerator, products can be placed correctly.This work was carried out in order to gain a better insight into air flow and heat transfer inside a refrigerator.Three configurations were studied: an empty refrigerator with and without shelves, and a loaded refrigerator. The objective was to quantify the air temperature and velocity distribution in the refrigerating compartment in the presence of obstacles (shelves and product) and to compare the results with those obtained using an emptyccompartment.The influence of heat exchange through natural convection (between the air and the walls) and by radiation (between the internal walls) was studied. Both experimental and numerical (CFD software) approaches were used. The practical objective of this study is to predict the warm and cold zones in a domestic refrigerator. This objective can be reached by the characterisation of air flow and heat transfer in the appliance.2. Literature reviewTo demonstrate the air flow and heat transfer in a refrigerator, literature on free convection phenomena in a closed cavity will be presented, then studies applied to domestic refrigerators will be mentioned.2.1. Air flow and heat transfer in an empty cavityAir flow by natural convection in an empty cavity is related to the difference in wall temperatures. Only conventional convection (one vertical cold wall and one vertical warm wall) is presented in this article. This configuration is often observed in domestic refrigerators where an evaporator is embedded in the vertical back wall and the door located opposite this wall is warm. The air density variation due to the temperature gradient (perpendicular to the gravitational direction) contributes to air circulation, hot air being lighter than cold air.The flow regime in natural convection is characterized by the Rayleigh number (Ra) defined as In general, the critical Rayleigh number, which distinguishes the transition from laminar to turbulent flows, is approximately 109 (depending on the geometry and boundary conditions, Incropera & Dewitt, 1996).Several experimental studies have been carried out to measure air temperature and/or velocity in closed cavities (Ampofo & Karayiannis, 2003; rmAaly, Li, & Nie, 2003; Betts & Bokhari, 2000; Mergui & Penot, 1996; Tian & Karayiannis, 2000).Tian and Karayiannis (2000) used a Doppler laser anemometer to measure the air velocity in a rectangular cavity (height _ width _ depth = 75 _ 75 _ 150 cm, Ra = 1.58 _ 109) (Fig. 1). They observed two types of air circulation.The first one is the principal air recirculation loop near to walls where the air temperature and velocity vary rapidly. The second one consists of small recirculation loops located between the boundary layers (near walls) and the centre of the cavity.Eckert and Carlson (1961) carried out an experimental study and they observed that outside the boundary layers, the temperature is homogeneous at a given height and this temperature increases in the vertical direction. They also proposed a correlation between Nusselt (Nu) and Rayleigh (Ra) numbers. No velocity measurements were undertaken in this study.Ostrach (1988), Catton (1978) and Yang (1987) carried out a literature review on this subject, which presents the experimental and modelling results (2-D and 3-D). These authors emphasise the importance of the aspect ratio of the cavity and the temperature difference between walls on the flow regime.Heat exchange by radiation between the internal wallsof the cavity is as important as that achieved by natural convection and this should be taken into account. Several authors (Balaji & Venkateshan, 1994; Ramesh &Venkateshan, 1999; Velusamy, Sundarajan, & Seetharamu,2001; Li & Li, 2002) showed by experimental and numerical approaches that these two heat transfer modes occur simultaneously. Ramesh and Venkateshan (1999) showed experimentally that for a square enclosure (vertical walls maintained at 35 and 65 _C, adiabatic horizontal walls, Ra = 5 _ 105), the heat transfer by convection and radiation between high emissive vertical walls(e = 0.85) is twice that between polished ones (e = 0.05).The result of this study is relatively different from the case of a domestic refrigerator since the wall temperature difference between the evaporator and the other walls is on average 15 K. The effect of radiation is, therefore, less significant. Balaji and Venkateshan (1994) proposed correlations (established from numerical simulations) to express the convection and radiation in a square cavity in function of e, Ra, Tc/Th and a radiationconvection interaction parameter These correlations show that the radiation effect increases when the wall emissivity and/or wall temperatures increase. Moreover, Li and Li (2002) reported that the radiation increases in comparison with convection as the size of the enclosure increases. Colomer, Costa, Consul, and Oliva (2004) reported that in a transparent medium, radiation significantly increases the heat flux. These authors also reported that for a given Planck number, and constant reference temperature ratio, the contribution of radiation remains almost constant for a range of Rayleigh number. An estimation of convection and radiation heat transfer in a refrigerator was carried out in our previous study (Laguerre & Flick, 2004). The equivalent radiative heat transfer coefficient between two parallel plates was evaluated to represent the radiative exchange between the evaporator wall and the door. It was found that, the radiative heat transfer coefficient is the same order of magnitude as the convective heat transfer coefficient. This confirms the importance of radiation.2.2. Air flow and heat transfer in a domestic refrigeratorIn an empty refrigerator, cold air near the evaporator flows downward and warm air near the door and the other side walls flows upwards (Fig. 2). The heat exchanges inside the cavity are related to natural convection between internal walls and air, radiation between evaporator and the other walls and conduction within the walls (Laguerre & Flick, 2004). In the case of a refrigerator filled with products, the products are cooled by natural convection, by radiation between the surface of the products and the internal walls of the refrigerator, and through conduction and radiation between products.Several studies have been carried out on the cold production system of domestic refrigerators (Alsaad & Hammad, 1998; Bansal, Wich, & Browne, 2001; Chen, Wu, & Sun, 1996; Graviss & Zurada, 1998; Grazzini & Rinaldi, 2001; Radermacher & Kim, 1996). The main objective of these studies is to optimize energy consumption. However, fewer studies have been carried out on phenomena inside the refrigerating compartment. Among these studies, those conducted by Masjuki et al. (2001) and James and Evans (1992) were experimental studies on empty and loaded refrigerators. The objective of these studies was to analyze the effects of several parameters on the temperature in the refrigerating compartment (thermostat setting, frequency of door openings, filled volume, temperature and humidity of ambient air). It is difficult to understand the mechanism of heat transfer by natural convection from the results obtained by these studies, due to the complexity of the refrigerator operation (compressoron” and off” cycles, different degrees of insulation in walls, heat loss through gaps, etc.). Measurement of air flow in a freezer compartment under real operating conditions was carried out by Lacerda, Melo, Barbosa, and Duarte (2005) using PIV (particle image velocimetry).It was observed that the flow field was strongly influenceby the temperature variations due to the on” and off” operation cycles of compressor. This behavior was attributed to natural convection and the physical properties (viscosity) of air, which strongly depend on the temperature.Another study on air flow in a ventilated domestic freezing compartment was carried out by Lee, Baek, Chung, and Rhee (1999). In this study, comparison of the velocity field obtained by CFD simulation and by experiment (PIV measurement) was undertaken. These authors observed that the flow was very complex: jet-like flow around entrance ports, impinging and stagnation flow on the walls and large recirculation flow in the cavity.Several numerical studies have been carried out on heat transfer in empty domestic refrigerators (Deschamps,Prata, Lopes, & Schmid, 1999; Pereira & Nieckele, 1997; Silva & Melo, 1998). However, few studies have been carried out on loaded refrigerators. The numerical studies mentioned previously provide knowledge on the temperature and velocity heterogeneity under determined conditions. However, radiation was not taken into consideration in spite of the fact that this heat transfer mode is of the same order of magnitude as that of convection. In our study, both empty and loaded refrigerators were studied and both natural convection and radiation were taken into account in the simulation.3. Materials and methods3.1. RefrigeratorA static cold refrigerator (without ventilation) was used in this work. It was a single-door appliance with only a refrigerating compartment (without a freezer). The general characteristics are shown in Table 1.Three cases were studied (Fig. 3): an empty refrigerator without shelves, empty refrigerator fitted with glass shelves(5 mm thickness, thermal conductivity of glass0.75 W m_1 K_1) and a refrigerator equipped with glassshelves and loaded with a test product”. This product is made of methylcellulose (thermal conductivity0.5 W m_1 K_1) and the dimensions of one package are 10 _ 10 _ 5 cm (length _ width _ depth). The arrangement of the packages is shown in Fig. 3c. All experiments were carried out in a temperature-controlled room(20 0.2 _C). As shown in Fig. 3, the evaporator is located in the upper part of the cabinet. The indentation observed in the lower right area of the figures represents the compressor placement. To avoid a too complex geometry, the containers for butter, eggs and bottles usually attached to the door were removed during our experiments. This facilitates the meshing of the refrigerator and the result interpretation.3.2. Measurement of the thermal resistance of refrigerator insulation Measurement of the thermal resistance of refrigerator insulation was carried out in a temperature-controlled room (6 _C). A heating coil was placed inside the switchoff” refrigerator. The heat supplied to the coil is equal to the heat loss to external air through the walls. The heating power was adjusted in such a manner as to maintain the average internal air temperature at 30 _C. In this manner, the average temperature of the insulating walls is almost the same as under real operating conditions. To ensure a homogeneous air temperature inside the refrigerator, a small fan was installed near the heating coil. The internal air temperature (Tint controlled at 30 _C), external air temperature(Text controlled at 6 _C), power supplied to the heating coil (Q1) and fan (Q2) were recorded when the steady state was attained (after 12 h) and the average values were calculated over 3 h. Thus, the thermal resistance of the refrigerator insulation can be calculated knowing Q1 + Q2 and Tint _ Text.The measurement was used afterwards for the boundary conditions in the CFD simulation. In fact, this experimental thermal resistance takes into account the thermal resistance between external air and internal walls. Therefore, a correction was undertaken on the measured value by subtracting the thermal resistance between internal air and walls. The internal convective heat transfer coefficient was assumed to be about 10 W m_2 K_1. This correction is weak because the thermal resistance between air and internal wall represents only around 7% of the overall thermal resistance (between external and internal air).3.3. Temperature measurementAir and product temperatures were measured experimentally using calibrated thermocouples (Type T) placed in different positions of the symmetry plane of the refrigerator and on the plane situated at 8 cm from side wall (Fig. 3). On each plane, the air temperature was measured at five height levels (31.0, 61.0, 94.0, 114.5, 134.5 cm) and for each height, five air temperature measurements were recorded (1, 2, 21.5, 42, 43 cm from the evaporator).Firstly, the refrigerator operated over 24 h to ensure stabilization conditions, then the temperatures were recorded every 2 min for 24 h and the average value was calculated at each measurement point. An example of temperature evolution inside the refrigerator is shown in Fig. 4. It can be seen that the evaporator temperature varies from_16 _C to +7 _C, due to the thermal inertia, the air temperature varies less, from +3.5 _C to +7 _C, and the wall temperature varies from 4 _C to 9 _C.4. Modelling4.1. Main assumptions and boundary conditionsIn the present study, the Rayleigh number (Ra) is about 6 _ 108 (estimation based on the height of the evaporator and the temperature difference between the internal air and the cold-wall surface). Laminar flow assumption was made for the flow regime in our simulation since Ra 109. Furthermore, several numerical studies showed that turbulence does not change the predicted air temperature pattern (Deschamps et al., 1999; Kingston, Woolley, &Tridimas,1994). Boussinesq approximation was used since the air temperature variation is small compared with the mean absolute value.The thermal boundary conditions are based on experimental data:Uniform global heat transfer coefficient between external air and internal wall (0.34 W m_2 K_1). Constant external air temperature (20 _C). Constant evaporator temperature (_0.5 _C) which is the average value during on and off running cycles of compressor. This constant temperature is used in order to avoid excessive complexity in the calculation and to reduce calculation time.The simulations were performed with the finite volume method using CFD software Fluent 6.1 with the resolution parameters indicated in Table 2.Transient simulation was performed but only the results obtained after simulation convergence were used in the comparison with the experimental values.4.2. MeshStructured mesh was used to describe the geometry of the refrigerator. Finer meshes were used near walls, shelves and products. The number of cells used in each case is shown in Table 3 and mesh structures are shown in Fig. 5. To ensure that the results were not influenced by the cell numbers, a sensitivity study was carried out beforehand. Only one half of the refrigerator was meshed because of the symmetry plane.4.3. Discrete ordinate method (DO) for radiationThe discrete ordinate method (Chui & Raithby, 1993) was successfully used to simulate the coupling of convection and radiation in closed cavity (Colomer et al., 2004; Sanchez & Smith, 1992).This model can take into account the participating medium. However, in our case, air is considered as transparent (with neither absorption nor diffusion). The general equation of heat transfer by radiation (in a given direction) is The walls are assumed as gray diffuse: Iout = /rad_out/p. Iin is intensity of incident radiation in direction (at r position);n is normal vector; Ts is surface temperature, K; X is solid angle.A sensitivity study of solid angle discretization was carried out beforehand in order to ensure that the simulation results were not influenced by the number of solid angle subdivisions.5. Results and discussion5.1. Numerical simulation (taking into account radiation)The results presented in this paragraph concern simulation, which takes into account heat transfer by convection between walls and air and by radiation between the internal walls of the refrigerating compartment.5.1.1. Temperature fieldsThe temperature fields obtained from simulations for the different cases studied are shown in Fig. 6. Considering only the main cavity (excluding the vegetable box), for all cases, thermal stratification is observed with the cold zone at the bottom (_2 _C) of the refrigerating compartment and thewarm zone at the top (89 _C). In addition, a cold zone is also observed along the back wall. This is related to cold air coming from the evaporator. When the refrigerator is loaded with products, the temperature of the product located near the evaporator is lower than that located near the door. In the top half of the compartment, the temperature is relatively homogeneous at a given height (except in the boundary layers near the walls). The temperature of the vegetable box is almost constant for all cases studied (_8 _C).The temperature field is slightly influenced by the presence of obstacles: shelves and products. A slightly lower temperature is observed at the bottom and a slightly higher one at the top compared with the empty refrigerator case. This is due to the fact that the shelves and/or the products slowed down the air circulation in the central zone of the refrigerator. The presence of shelves and/or products also influenced the main air circulation in the boundary layers situated along the evaporator and the side walls. However, this influence is weak because of the presence of air spaces between the shelves and the vertical walls (1.2 cm between the back wall and the shelves), which facilitates the air flow. In our previous study, it was found that the thickness of the boundary layer was less than 2 cm (Laguerre, Ben Amara, & Flick, 2005).In addition to the overall thermal stratification in the cavity, stratification is also observed in each gap between two shelves or between a shelf and a product. It is to be emphasised that for the refrigerator loaded with the testproduct”, the symmetry plane is located in the gap between two piles. This explains why the packages are invisible on this plane (Fig. 6c). On the plane situated at 8 cm from a side wall which cuts the product pile (Fig. 6d), a cold product zone near the evaporator can be clearly distinguished. This is related to the blockage of cold air by the product.The average and maximum air temperatures in all cases are reported in Table 4. The air temperatures increase with increasing numbers of obstacles.5.1.2. Air velocity fieldFig. 7 presents the air velocity fields on the symmetry plane (Fig. 7ac) and on the plane situated at 8 cm from the side wall (Fig. 7d) for the different cases studied. Considering only the main cavity (excluding the vegetable box), for all cases, the main air circulation is observed near the walls, and constitutes a recirculation loop. Air flows downwards along the evaporator while its velocity increases along the course to attain a maximum value at the bottom of the refrigerator (umax _ 0.2 m s_1). Air then flows upwards along the door and the side walls of the refrigerator while its velocity decreases progressively and becomes stagnant at the top of the refrigerator. This observation is in agreement with the air temperature field shown in Fig. 6, with cold air located at the bottom of the cavity and warm air at the top. It can also be observed that there is a weak horizontal air flow from the door to the evaporator. However, the air velocity at the centre of the cavity is very low (0.04 m/s). In the case of the refrigerator fitted with glass shelves, in addition to the main air flow along the walls as mentioned previously, there are also small air loops between the shelves. For the refrigerator loaded with products, air flows in the gaps between the shelves and the products (Fig. 7d).It should be remembered that the containers attached to the door were not represented in our study. In practice these containers are an obstacle to airflow along the door and reduce the air velocity in this area.Considering the vegetable box, one or two air recirculation loops were observed (Fig. 7). This is due to the presence of the glass shelf (cold wall), which separates the vegetable box from the main cavity, and the five other walls which are warmer (heat loss through these walls). 5.2. Comparison with numerical simulation without radiation Fig. 8 presents the air temperature field on the symmetry plane obtained by simulation without taking into consideration radiation (between internal walls of the refrigerating compartment, shelves and product surface). It was observed that overall the temperature field is similar to that present when radiation is taken into account (a cold zone at the bottom and a warm zone at the top). However, stratification is more pronounced without radiation, and this leads to a higher temperature at the top of the cavity. In fact, for an empty refrigerator, the maximum temperature rises from 8 _C (with radiation) to 15 _C (without radiation). This temperature increase can be explained by the fact that, without radiation, there is no heat exchange between the warm top wall and the other colder walls, particularly the evaporator wall. This contributes to a high air temperature at the top position. When radiation is taken into account, the heat exchange between the top wall and the other walls tends to reduce the top wall temperature and consequently reduces air temperature near this wall. From a microbiological point of view, the growth rate is much higher at 15 _C than at 8 _C. It is therefore necessary to take into consideration radiation in the simulation in order to better describe the phenomena occurring in domestic refrigerators. 5.3. Comparison between the predicted air temperature and experimental valuesFig. 9 presents a comparison between the experimental and predicted air temperature results (with and without taking into account radiation). It can be seen that the simulation results with radiation agreed with the experimental values to a greater extent, while simulation without radiation over-estimated the air temperature, particularly at the top of the refrigerator. The peaks observed on the temperature profile in the presence of shelves and/or products can be explained by the higher conductivity of glass compared with air and by the cold air flow along the upper sides of the shelves.The agreement between the experimental and simulation results is relatively poor in the case of a loaded refrigerator, even though the radiative heat exchange between the product and the walls was taken into account. This may be explained by the geometry complexity. Further refinement could lead to a better agreement, but the computing time is already very high (about 8 days using a cluster of four processors of 2Go of RAM).6. ConclusionsNumerical simulation of air flow and heat transfer was carried out within the refrigerating compartment of a domestic refrigerator without a fan. Three configurations were studied: an empty refrigerator, an empty refrigerator fitted with glass shelves and a refrigerator loaded with products. When radiation was taken into consideration in simulation, the predicted air temperatures were in good agreement with the experimental values. However, when radiation was not taken into account, the temperature was over-estimated, particularly at the top of the refrigerator. Radiation allows heat exchange, particularly between the top wall and the cold wall (evaporator); consequently, it limits the stratification phenomena.The obstacles (shelves and/or products) slow down the air circulation in the central zone of the refrigerator and mildly influence the main air circulation along the walls.This is confirmed by the maximum values of air temperature:8.2 _C for an empty refrigerator without shelves and9.1 _C for an empty refrigerator with shelves and refrigerator loaded with products.Whatever the configuration studied (empty with/without shelves, loaded with products) for this type of refrigerator, the air temperature at the top of the refrigerator is about 5 _C higher than the average air temperature, and therefore it is important to avoid placing sensitive products in this position.The CFD simulation developed by our work can be further used as a tool to study the influence of operating conditions on the temperature and velocity fields: the evaporator temperature (parameter related to the thermostat setting by the consumer), the dimensions of the evaporator (parameter related to design) and the percentage of product-occupied volume in the refrigerating compartment.AcknowledgementThe authors would like to thank to the French Ministryof Agriculture and the “le de France Regional Council” for their financial support.References1 AFF, Association Franc_aise du Froid (2001). Conseil National du Froid,Livre blanc sur les fluides frigorigenes, Paris (51pp).2 Alsaad, M. A., & Hammad, M. A. (1998). The application of propane/butane mixture for domestic refrigerators. Applied Thermal Engineering, 18, 911918.3 Ampofo, F., & Karayiannis, T. G. (2003). Experimental benchmark data for turbulent natural convection in an air filled square cavity. International Journal of Heat and Mass Transfer, 46(19), 35513572.4 Armaly, B. F., Li, A., & Nie, J. H. (2003). Measurements in threedimensional laminar separated flow. International Journal of Heat and Mass Transfer, 46, 35733582.5 Balaji, C., & Venkateshan, S. P. (1994). Correlations for free convection and surface radiation in a square cavity. International Journal of Heat and Fluid Flow, 15(3), 249251.6 O. Laguerre et al. / Journal of Food Engineering 81 (2007) 144156 155 Bansal, P. K., Wich, T., & Browne, M. W. (2001). Optimization of eggcrate type evaporators in domestic refrigerators. Applied Thermal Engineering, 21(7), 751770.7 Betts, P. L., & Bokhari, I. H. (2000). Experiments on turbulent natural convection in a closed tall cavity. International Journal of Heat and Mass Transfer, 21, 675683.8 Billiard, F. (2005). Refrigerating equipment, energy efficiency and refrigerants. Bulletin of the International Institute of Refrigeration, 85(1), 1225.9 Catton, I. (1978). Natural convection in enclosures. In Proceedings of 6th international heat transfer conference, Toronto, Canada (Vol. 6, pp.1331).10 Chen, L., Wu, C., & Sun, F. (1996). Heat transfer effect on the specific cooling load of refrigerators. Applied Thermal Engineering, 16(12),989997.11 Chui, E. H., & Raithby, G. D. (1993). Computation of radiant heat transfer on a non-orthogonal mesh using the finite-volume method. Numerical Heat Transfer, Part B, 23, 269288.12 Colomer, G., Costa, M., Consul, R., & Oliva, A. (2004). Threedimensional numerical simulation of convection and radiation in a differentially heated cavity using the discrete ordinates method. International Journal of Heat and Mass Transfer, 47, 257269.13 Deschamps, C. J., Prata, A. T., Lopes, L. A. D., & Schmid, A. (1999). Heat and fluid flow inside a household refrigerator cabinet. In Proceedings 20th IIR international congress of refrigeration, Sydney. Eckert, E. R. G., & Carlson, W. O. (1961). Natural convection in an air layer enclosed between two vertical plates with different temperatures. International Journal of Heat and Mass Transfer, 2, 106120.14 Graviss, K., & Zurada, J. (1998). A neural network controller for optimal temperature control of household refrigerators. Intelligent Automation and Soft Computing, 4(4), 357372.15 Grazzini, G., & Rinaldi, R. (2001). Thermodynamic optimal design of heat exchangers for an irreversible refrigerator. International Journal of Thermal Sciences, 40(2), 173180.16 IIR, International Institute of Refrigeration. (2002). Report on refrigeration sector achievements and challenges (77pp).17 Incropera, F. P., & Dewitt, D. P. (1996). Fundamentals of heat and mass transfer (4th ed.). John Wiley & Sons. James, S. J., & Evans, J. (1992). The temperature performance of domestic refrigerators. International Journal of Refrigeration, 15(5), 313319.18 Kingston, P.Woolley,N.&Tridimas,Y.(1994).Fluid flow and heat transfer calculations in a domestic refrigerator. FIDAP UK user meeting, Fluent France SA(pp.111).19 Lacerda, V. T. Melo, C. Barbosa, J.R.&Duarte, P.O.O.(2005). Measurements of the air flow field in the freezer compartment of a topmount no-frost refrigerator: the effect of temperature. International Journal of Refrigeration, 28, 774783.20 Laguerre, O., Ben Amara, S., & Flick, D. (2005). Experimental study of heat transfer by natural convection in a closed cavity: application in a domestic refrigerator. Journal of Food Engineering, 70, 523537.21 Laguerre, O., & Flick, D. (2004). Heat transfer by natural convection in domestic refrigerators. Journal of Food Engineering, 62, 7988.22 Lee, I. S., Baek, S. J., Chung, M. K., & Rhee, D. (1999). A study of air flow characteristics in the refrigerator using PIV and computational simulation. Journal of Flow Visualisation and Image Processing, 6,333342.23 Li, N., & Li, Z. X. (2002). Relative importance of natural convection and surface radiation in a square enclosure. International Journal of Nonlinear Science and Numerical Simulation, 3, 613616.24 Masjuki, H. H., Saidur, R., Choudhury, I. A., Mahlia, T. M. I., Ghani, A. K., & Maleque, M. A. (2001). The applicability of ISO household refrigerator-freezer energy test specifications in Malaysia. Energy, 26(7), 723737.25 Mergui, S., & Penot, F. (1996). Convection naturelle en cavite carree differentiellement chauffee: investigation experimentale a Ra = 1.69 _ 109. International Journal of Heat and Mass Transfer, 39(3), 563574.26 Ostrach, S. (1988). Natural convection in enclosures. Journal of HeatTransfer, 110, 11751190. 27 Ramesh, N., & Venkateshan, S. P. (1999). Effect of surface radiation on natural convection in a square enclosure. Journal of Thermophysics Heat Transfer, 13(3), 299301.28 Sanchez, A., & Smith, T. F. (1992). Surface radiation exchange for twodimensional rectangular enclosures using the discrete-ordinates method. Journal of Heat Transfer, 114, 465472.29 Silva, L. W., & Melo, C. (1998). Heat transfer characterization in rollbond evaporators. MSc dissertation, Federal University of Santa Catarina, Brazil. Tian, Y. S., & Karayiannis, T. G. (2000). Low turbulence natural convection in an air filled square cavity: part I: the thermal and fluid flow fields. International Journal of Heat and Mass Transfer, 43,849866.30 Velusamy, K., Sundarajan, T., & Seetharamu, K. N. (2001). Interaction effects between surface radiation and turbulent natural convection in square and rectangular enclosures. Transaction ASME, 123,10621070.31 Yang, K. T. (1987). Natural convection in enclosures. Handbook of singlephase heat transfer. New York: Wiley. 156 O. Laguerre et al. / Journal of Food Engineering 81 (2007) 14415632 Pereira, R. H., & Nieckele, A. O. (1997). Natural convection in the evaporator region of household refrigerators. In Proceeding Brazilian congress mechanical engineering, Bauru, CD rom, paper COB1236. Radermacher, R., & Kim, K. (1996). Domestic refrigerators: recent developments. International Journal of Refrigeration, 19(1), 6169.6、中文翻译家用冷柜数值模拟空气流动与传热 Aumr genie 法国农科院-昂西亚, 44 , 92163阿松CEDEX ,法国Bumr genie 法国农科院- 昂西亚,克劳德贝尔纳, 75231巴黎,法国收到2006年2月24日接见了在修订的表格2006年10月17日;接纳2006年10月21日网上提供2006年12月15日摘要:这项工作的开展是研究家用冷柜在没有通风设备时的自然对流传热情况。对冷藏舱在三种配置下进行了研究:空冷柜,冷柜装有玻璃架和装有玻璃架和冷柜产品。模拟采用了CFD(计算流体动力学)软件顾及或忽略辐射传热。符合下列条件,假设:蒸发器的温度不变,三维空气层流。计算结果表明,在所有的配置下冷藏间内的温度都分层(热区域在顶部而低温区域在底部)。比较显示:当考虑辐射时计算空气温度值和实验值是一至的。关键词:计算流体力学、模拟、密封箱、制冷、家用冷柜1.1导言家用冷柜已经在工业化国家中被广泛使用。现在全球有大约十亿家用冷柜( IIR号, 2002年)。在法国,每家有1.7冷柜(AFF , 2001年) 。在发展中国家,生产也在稳步提高:在2000年总生产同比增长30 (桌球室, 2005年)。一些迹象表明,家用冷柜中存放食物的温度往往很高。冷柜内没有通风设施,又由于冷柜内空气不流通,因而冷柜内经常有很大的温度差异:热区(易变质)和冷区(易结冰)。对于这种类型的冷柜,广泛使用在欧洲和发展中国家,传热发生主要是自然对流。了解空气的温度和流速在冷柜中的分布情况对于食品的质量控制是很重要。事实上,如果消费者知道冷柜中的热区和冷区,他们就能够正确的摆放物品。表1 进行这项工作,以获得更深入了解冷柜内的空气流动与传热。三种配置的研究:有架子的冷柜和没有架子的冷柜,和装了东西的冷柜。该计划的目的是量化冷藏间内在有障碍物(玻璃板和物品)时的空气温度和速度分布,并与那些没放物品时的情况相比较。采用实验和数值(CFD软件)的办法通过自然对流(空气和墙壁)和辐射传热(之间的内部墙壁)对热交换的影响进行了研究。本研究的目的是为了预测家用冷柜的热区和冷区的位置。这个目标可以通过冷柜内空气特定的流动与传热特性实现。 2 、文献回顾为了展示冷柜内的空气流动与传热情况,先介绍下在一个腔内的自然对流现象,这些研究结果将会在家庭冷柜中会提到。2.1 空腔内空气流动与传热特性空腔内空气的自然对流和墙面的温度有关。本篇只介绍常规对流(一个垂直冷壁和一个垂直热壁)下的传热。这种情况经常在家用冷柜的蒸发器中可以看到(蒸发器是嵌入在冷柜冷藏室的垂直后壁中),且位于冷藏后壁即冷柜门的对面就是热壁。空气密度变化有助于空气流通,而空气密度的变化是由于温度梯度(垂直于重力方向)造成的 ,热空气比冷空气轻。自然对流的流动特是由雷诺数决定的( RA )其定义是一般而言,临界雷诺数是决定流动状态从层流至湍流的依据,大约为 (取决于几何形状和边界条件)图1 。几个实验研究已测量了封闭腔内空气的温度和速度。(Ampofo和Karayiannis,2003年; Armaly ,Li,和Nie, 2003年; Betts和Bokhari, 2000年; Mergui和 Penot ,1996年; Tian和Karayiannis, 2000年)。Tian 和 Karayiannis(2000)用激光多普勒流速仪测量空气流速,在一个长方形腔(高宽深= 7575150厘米,在Ra = 1.58)。 他们观察到两种类型的空气流通。第一个是主要的空气再循环环路,即附近墙壁的空气温度和速度的不同行成的。第二个是小的再循环环路,边界层(近墙)和该中心的空腔行成的。Eckert和Carlson(1961年)进行了一项实验研究,他们指出:在外边界层垂直方向上温度是增加的,但在某一特定的高度范围内温度是均匀的。他们还提出了努塞尔数(Nu)以及雷诺(Ra)数之间的关系。这样就不需要测量速度了。Ostrach (1988), Catton (1978)和 Yang (1987)关于这个问题提出了一个观点,其中介绍了实验和模拟结果(2-D和3-D)。这些作者强调:重要的是长宽比例与各各温度壁上不同的流动状态。冷柜内壁通过辐射交换的热量和通过自然对流交换的热量是同样重要的,应加以考虑。几位作者(Balaji & Venkateshan, 1994; Ramesh &Venkateshan, 1999; Velusamy, Sundarajan, & Seetharamu,2001; Li & Li, 2002)由实验和数值模拟的方法表明:这两种传热方式是同时进行的。 Ramesh和Venkateshan的(1999)实验表明,对于被封闭的面(垂直墙壁保持在35和65 ,Ra = 5),由高放射性垂直墙通过对流和辐射所传递的热量是(E= 0.85 )经过抛光的两倍( E=0.05 ) 。本研究结果和家用冷柜的温差传热有很大的不同,因为家用冷柜的蒸发器和其他的墙壁平均温差只有15 K,辐射因此是较次要的。Balaji和Venkateshan (1994)提出了对流和辐射之间的关系(建立了由数值模拟),并表明了、Ra、Tc/Th在传热中的作用这些相关性表明:当壁面辐射率或墙壁温度升高时这种辐射效应增加。此外,Li and Li (2002)报告说,辐射量随着箱体的尺寸的增加也增加。 Colomer, Costa, Consul, and Oliva (2004)报告说:在透明的介质中,辐射大大增加了热流。这些作者还报告说,对于给定普朗特数,并不断参考温度比的辐射,雷诺数几乎恒定。我们在以前的研究中对冷柜的对流和辐射传热进行了估计(Laguerre 和 Flick, 2004)。蒸发器墙和大门两条平行板之间的辐射传热系数为代表进行评估。结果发现:辐射传热系数和对流传热系数是同一数量级。这正好印证了辐射的重要。2.2 、家用冷柜中的空气流动与传热在一个空冷柜中,冷空气靠近蒸发器低处流动,暖空气接近大门的另一边墙壁向上流动(图2)。该腔内的热交换是与内部墙壁和空气之间的自然对流,蒸发器和其他墙壁的副射和墙壁内部导热(Laguerre和 Flick,2004年)相关 。在冷柜中装满产品时,产品通过自然对流、产品表面的之间辐射和冷柜内部墙壁的辐射、产品之间的传导和辐射使产品冷却。一些人对家用冷柜的冷冻系统进行了研究(Alsaad和 Hammad, 1998; Bansal, Wich, 和 Browne, 2001; Chen, Wu, 和 Sun, 1996; Graviss 和 Zurada, 1998; Grazzini和 Rinaldi, 2001; Radermacher 和 Kim, 1996) 。这些研究的主要目是优化能源的消耗。然而,很少对内冷藏舱现象进行研究。在这些研究中, Masjuki et al. (2001) and James and Evans (1992)这些人对空装冷柜的冷藏舱进行了实验研究。客观的分析了影响冷藏舱(恒温设置,频率的大门开口,填充量,温度和湿度的环境空气)温度的几个参数。由于冷柜系统(按循环开关“开 和“关,壁温、热损失都会不同等)这个问题相当复杂,从那些研究中获得研究结果是很困难的。Lacerda, Melo, Barbosa,和Duarte (2005) 根据实际运行情况使用PIV (粒子图像测速)对冷冻舱空气流动进行了测量 。据指出,流场受温度变化的强烈影响是由于按循环开关“开 和“关。这种行为被归结为自然对流和物理性能(粘度)的空气,强烈地依赖于温度。另一项研究, Lee, Baek, Chung, and Rhee (1999) 对家用冻结间内空气流动的通风进行了研究。在这项研究中,通过计算流体力学模拟与实验( PIV测量)得到的速度场进行比较了。这些作者指出,流动是非常复杂的:腔体内有喷射状绕流入口,撞击和停滞流对墙处有大量的涡流。一些人(Deschamps, Prata, Lopes,和 Schmid, 1999; Pereira 和 Nieckele, 1997; Silva 和 Melo, 1998) 对家用空冷柜的传热进行了几个数值研究。然而,很少有人对装了物品的冷柜进行研究。在数值研究中前面提供的温度和速度的知识是决定的条件。尽管对流和辐射传热方式是同一量级这是事实,然而,辐射仍没有考虑到。在我们的研究中,对空冷柜和装了物品的冷柜都进行了研究以及自然对流和辐射进行了仿真。 3、材料与方法3.1 冷柜一个无噪声的冷藏冷柜(无通风) ,用在这方面的工作。这是一个单门家电只有冷藏舱(没有冷冻箱) 。总的特点是表1所示。对三种情况进行了研究(图三) :没有架子的空冷柜,装有玻璃货架的空冷柜( 5mm厚度,热导率的玻璃0.75(W/(m*K) ,并配备了冷柜用玻璃货架,并装测试产品。这种产品是由甲基纤维素(导热系数0.5(W/(m*k)和尺寸为10 105cm(长宽厚)的物架 。安排的软件包显示图。在P3 。在温度控制的房间(20 0.2)都进行了试验。所示的图3 ,蒸发器是设在箱体的上部。压痕观察,在右下区的数字,代表压缩机安置。为了避免过于复杂的几何形状,容器中装有黄油,鸡蛋和瓶子通常都附在冷柜门上的在我们的试验中可以被拆除的。这有利于冷柜和结果的解释。 3.2、测量冷柜的保温热电阻测量冷柜的保温热电阻要在一个温度控制室(6)进行。加热线圈放在冷柜的转换开关内。线圈供应的热量等于空气通过墙壁向外部损失的热量。加热功率进行了调整,在这样一个方式,以维持内部的平均气温在30。以这种方式,其保温墙的平均温度和实际运行状况时几乎是一样的。为了确保冷柜内的均匀的空气温度,在加热线圈和附近安装了一个小风扇。内部空气温度(色彩控制在30) ,外部空气温度(全文控制在6) ,电源供应给加热线圈()和风扇()当平均价值计算超过3小时就记录达到了稳定状态(后12小时) ,冷柜的保温热敏电阻都可以计算出来,和int+ext。测量采用事后边界条件,在计算流体力学模拟时。其实,这个实验热电阻顾及热敏电阻之间的外部空气和内部墙壁。因此,更正是根据实测值减去热电阻之间的内部空气和墙壁。内部对流的传热系数是假定约为10(W/(m*k)。这个调整过程是很弱的,因为热敏电阻之间的空气和内部隔离墙只有约百分之七的总体热阻(与外部和内部空气)。3.3、温度测量空气和产品温度测量实验用校准热电偶( T型)放置在不同位置的冷柜的对称平面上位于边墙8厘米(图三)。对每一块板,空气温度测量五个层次( 31.0 , 61.0 , 94.0 , 114.5 , 134.5厘米),并为每个层,5个空气温度测量记录数据(1,2,21.5,4,43厘米蒸发器)。首先,冷柜运作超过24小
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:大冷柜BD625门体结构设计
链接地址:https://www.renrendoc.com/p-49254299.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!