资源目录
压缩包内文档预览:
编号:492546
类型:共享资源
大小:3.89MB
格式:ZIP
上传时间:2015-11-07
上传人:QQ28****1120
认证信息
个人认证
孙**(实名认证)
辽宁
IP属地:辽宁
30
积分
- 关 键 词:
-
机械毕业设计全套
- 资源描述:
-
JX01-238@起重夹钳设备的总体设计,机械毕业设计全套
- 内容简介:
-
毕业设计开题报告 课题名称: 滑移式起重夹钳设备的总体设计 学生姓名: 方继松 院 别: 机械工程 学院 专 业: 机械设计制造及其自动化 指导教师: 刘 伟 香 2011 年 3 月 1 日 nts一 、 综述国内外对本课题的研究动态,说明选题的依据和意义: 国内外对本课题的研 究动态: 夹 钳作为一种起重作业机具被广泛应用于冷、热轧薄板厂,用来搬运各种半成品及成品钢卷,是一种工作效率很高、适应性极强、用途非常广泛的起重设备,属于冶金行业中的特种设备。按夹钳在夹持物料的过程中有无辅助外力,可将其分为外力辅助式夹钳和重力式夹钳。外力辅助式央钳是靠辅助外力实现对物料的夹持,不管货物的尺寸如何,只要辅助设备工作得当,这种夹钳就能轻易地对其实现夹紧,它具有操作简单、生产效率高、夹持力可调等特点。相对于外力辅助式夹钳,重力式夹钳只能靠夹钳和物料的自重实现对物料的夹持,它具有安全可靠、结构简单、 制造方便、成本低廉、不消耗动力能源、寿命较长等特点,因此得到了广泛的应用。 目前我国应用较多的是重力式 夹 钳,由于其初始夹紧力的产生是靠夹钳和物料的自重实现的,如何用合适的力夹取物料,做到既能安全实现夹取,又避免钳体的受力太大而导致钳臂或物料的破坏就显得非常重要了。以带卷夹钳为例,如果钳口产生的夹持力不够大,夹钳夹持带卷就不可靠;如果产生的夹持力太大,钳臂的受力会很大,各钳臂的强度也会要求很高,导致钳体笨重:而且在夹持高温带卷时,夹持力太大时带卷接触面容易出现较大的塑性变形,而使其表面产生较深的压痕,破坏了带 卷表面的完整性,给它的进一步加工带来不必要的麻烦。 德国、美国、俄罗斯等国家,在央钳的研究方面做得很好,这些国家很早就对各种钳式取物装置进行了理论和实验研究。在我国,在吊夹装置、液压钢卷夹钳、重力式板坯 夹 钳、电动平移式板坯 夹 钳等方面进行过研究性工作。相对于国外,我们国家在夹钳上的研究还是非常有限,特别是在重力式带卷 夹 钳上,很少进行系统性的研究。 选题的依据和意义 我国目前的现役重力式带卷兴钳,一部分来源于原装进口,另一部分则是靠对国外同类产品的测绘仿制。由于缺乏对原装进口样机的深入性研究,事实上并没有真正 消化吸收国外的相关技术,整个带卷夹钳的生产仍然处于仿制阶段。 二 、 研究的基本内容,拟解决的主要问题: 研究的基本内容 : 1.了解国内外起重夹钳技术的发展及应用情况、夹钳装置的工作原理,进行常用夹钳装置的结构分类与分析。 2.确定 起重机设计方案夹钳 装置的设计、传动装置方案的设计以及对设 备的稳定性进行分析。 nts拟 解决的主要问题 : 通过了解学习掌握夹钳装置的工作原理,对起重夹钳装置的结构进行分类与分析,通过分析从而确定起重机设计方案夹钳装置的设计,传动装置方案的设计以及分析设备的稳定性。 三 、 研究的步骤、方法、措施及进度安排: 研究的步骤、方法、措施 先在导师的帮助下查阅相关的资料,通过 收集资料 对课题进行初步的了解,在理清夹钳装置的工作原理之后对其结构进行分析,确定总体方案,然后确定传动装置方案的设计和分析稳定性,最后 通过分析设计模拟制作夹钳设备,通过实践看是否设计合理 。 进度安排 序号 各阶段完成的内容 完成时间 1 熟悉课题及基础资料 第一周 2 了解原理、翻译以及开题报告 第二四周 3 确定起重机设计方案 第五六周 4 夹钳装置的设计 ;传动装置方案的设计;设备稳定性分析 ;毕业 设计中期检查 第七八周 5 绘制 CAD 图和叫论文初稿 第九十周 6 制作夹钳设备 第十一十二周 7 整理设计说明书,交毕业设计完成稿 第十三十四周 8 交 毕业设计 答辩申请暨资格审查表 ,答辩 第十五周 四 、 主要参考文献: 1吴宗泽 ,罗圣国 .机械设计课程设计手册 M.北京 :高等教育出版社, 2007. 2曹自立 . 60t 板坯夹钳搬运起重机试制成功 J. 起重运输机械 , 1996,(9):15-17. 3 谢华 ,郗江云 ,李建红 .装配设计 M. 北京:机械工业出版社 ,2007. 4倪泽娅 . 重力式板坯夹钳的开发与研制 J. 重型机械科技 , 2006. 5 马保生 . 夹钳起重机的夹钳装置 J. 太原重型机械研完所, 2009. 6贾和平 . 25112t 电动平移式板坯夹钳起重机太远 J. 太原重型机械 (集团 )有限公司nts设计研究院 , 2009. 五 、 指导教师意见: 资料搜索较全面,准备充分,可以开题。 签名: 六、教研室意见: 签名: 注:此表 由学生本人填写,一式三份,一份留系里存档,指导教师和学生本人各保存一份。 nts 毕业设计(论文)任务书 课题名称 : 滑移 式 起重夹钳设备的总体设计 学生姓名 : 方继松 院 别 : 机械 工程 学院 专 业 : 机械设计制造及其自动化 指导教师 : 谭湘夫 2010年 12月 1日 nts 1、主题词、关键词: 滑移 式 起重 机方案设计 ;传动 装置 方案 的设计计算 ; 夹钳 装置的设计 ;设备稳定性分析 2、毕业设计(论文)内容要求: (1) 查阅文献资 料 , 其中中文文献不得少于 15 篇,外文文献不少于 3 篇,将其中一篇外文文献(不少于 3000 英文单词)翻译成中文 (将中英文装订在一起) 。 写出 国内外起重夹钳技术的发展及应用情况 、 夹钳装置 的工作原理、夹钳装置 的工作要求及性能 (2) 确定 起重 机设计方案 ; 设计 夹钳 装置 ;传动 装置方案 的设计 (3) 设备稳定性分析 (4) 用 铅笔 绘 起重运输设备 总装 配 图一张 (0#),主要部件图 两 张; 还要求用AUTOCAD将上述图绘出 (5) 说明书的撰写要求认真、准确、条理清晰 ;文中引用的文献要依次编号,其序号用方括号括起,如 1、 2,置于右上角,文献内容必须严 格按照引用的先后顺序依次在毕业设计论文的最后列出 ;文档运用 “ word 长篇文档排版技巧”,按学院毕业设计手册要求的格式与样式排版 ;用公式编辑器编辑公式 ;毕业设计说明书正文字数在 1.5 万字 左右 ,交打印稿与电子稿 3、文献查阅指引 : 1吴宗泽 ,罗圣国 .机械设计课程设计手册 M.北京 :高等教育出版社 , 2007. 2 曹自立 . 60t 板 坯 夹 钳 搬 运 起 重 机 试 制 成 功 J. 起 重 运 输 机 械 , 1996,(9):15-17. 3 谢华 ,郗江云 ,李建红 .装配设计 M. 北京: 机械工业出版社 ,2007. 4倪泽娅 . 重力式板坯夹钳的开发与研制 J. 重型机械科技 , 2006, (2):14-17. 5 利用百度搜索工具查阅相关内容的最新进展 6利用湖南理工学院图书馆电子阅览室查阅、 收集相关资料 7一定要找到三 篇与论文有关的英文原版参考文献,参考文献至少 1 篇 其中外文文献不少于 3 篇,将一篇外文文献(不少于 3000 英文单词)翻译成中文 nts 4、毕业设计(论文)进度安排: 第 1 周 实习 ;设计前准备工作 , 接受设计任务、收集资料 ( 至少 18 篇参考文献) 第 2、 4 周 了解国内外起重夹钳技术的 发展及应用情况、夹钳装置的工作原理 ; 作好制作 准备工 作 ; 将 3000字的与本课题有关的英文文献译成中文 ;交 毕业设计(论文)开题报告 第 5、 6 周 进行常用夹钳装置的结构分类与分析 ; 确定 起重机设计方案 第 7、 8 周 夹钳 装置的设计 ;传动 装置方案 的设计 ; 设备稳定性分析 ;毕业设计(论文)中期检查 第 9、 10 周 用铅笔 绘 起重运输设备总装 配 图一张 (0#),主要部件图两张;还要求用AUTOCAD将上述图绘出; 交 论文 初稿(纸质 打印稿 ) 第 11、 12 周 制作夹钳设备 第 13、 14 周 整理设计说明书, 交 毕业设计完 成 稿 ( 要交 WORD 文档 和 PDF 文档两种格式的电子稿 ); 准备毕业答辩 第 15 周 交 毕业设计(论文)答辩申请暨资格审查表 ; 毕业答辩 教研室意见: 负责人签名: 注: 本任务书一式三份,由指导教师填写,经教研室审批后一份下达给学生,一份交指导教师,一份留系里存档。 nts附录 1 外国文献翻译: 液压气动 从海 上到 航空航天 的 应用,液压系统可在实验室或条件恶劣 情况下 ,比如 温度 的极端变化 ,冲击,振动,电磁干扰( EMI),射频干扰( RFI)和脉动。电子控制 作为 一个新的控制系统出现 于 20 世纪 70 年代初, 电动水力学 开始 进入了工业化国家。这些早期的控制系统开始了工业 的 自动化革命 。 随着时间的推移,更好的传感技术和低成本的微处理器和控制器 的 供应加速液压控制 的 增长。今天,压力测量 通过 整体性能,安全手段和反馈 方式 在确定液压系统健康的 起了重要作用 。根据不同的应用,最先进的液压系统工作 于 1000至 10,000 磅 /平方英寸 的,但也有一些可能会高达 60,000 磅 /平方英寸 的。 压力测量一个简单的开关压力 转换 或一个电子压力传感器 就 可以完成, 这种电子压力传感器 提供了一个线性电子输出信号。由于其灵活性和 其它方面的优良性能 , 电子压力传感器 正在逐步取代 换压力开关,但是, 在 液压应用的性能和可靠性 方面 还有一些必须解决的课题。压力传感技术,传感器封装,液压系统暂态保护和 EMI / RFI 保护, 这些方面的应用都 必须仔细考虑 。 图 1。一个典型的电容传感器包含一个固定和移动盘。 nts压力传感技术 传感压力的两个 主要技术是电容和压阻。电容技术采用一两个板块之间的电容变化的差距 的 手段,固定一个 和 移动其他 的 ,如图 1 所示。该电容通常是连接到一个复杂的电子电路, 可以转换 如 1-5 V 或 4-20 毫安输出的电容信号。因为电容变化在 1 微法拉 到 1 法拉 级,电子电路 安装的位置 很接近 感应板,以减少杂散电容。 由于 这种 媒体和电容之间的 距离 很短 , 能够 限制了传感器的工作温度。 如果是金属或掺杂半导体拉伸或压缩,因为尺寸变化(长度和横截面积的电阻变化)和电阻率变化(这后者的属性称为压阻) 它的抵抗力会改变 。 应变传感器技术是用来测量 当长度由 L变到 L和阻力从 R变到 R的变化。应变计的敏感性因素,可以计算 G: 变化( R 注册商标)( L 长) 金属应变计,典型的应变系数为 2。这些应变电测设备,因为其 不同的大小通常称为应变计 。 图 2 显示了一个保税箔应变计的轮廓。保税箔应 变计是由镍铬或镍康斯坦丁物质通常具有绝缘聚酯薄膜作后盾。这 种可以 粘一个金属或陶瓷基片。薄膜测量仪 通过溅射金属而焊接在 金属绝缘基片上, 所以 不需要任何粘合胶。在 20 世纪 60 年代初,开发 半导体测量仪 提供更高的量 规 因素 ( 55-200) , 具有更小的封装尺寸 。半导体压力表 制作方法有 两种: 散装硅或锗材料, 现有的 任一P 型 如硼或 N 型材料 如磷, 能 掺杂使用 以 提供电力和热性能 ;使用磷,离子植入 n组的材料在一起,形成一个 PN 结。这些应变计通常是连接在一个惠斯通电桥配置如图 3( 4 活性 武器是为最高赔偿所示)提供有限的温度补偿。 对 于金属或薄膜应变计 , 1100 显微 应变才 输出信号 3mV/V,而半导体计 300 微 变 将提供高达50mV/V。 压力传感器 包装 最初的压力传感 包装是 基于 传感技术的应用程序 和 经营条件。 作为这次讨论的一部分 , 信号调理电 路 和电气接口可被视为次要问题 。让我们回顾其中一些包装的 优点和问题。 大 多数低成本的陶瓷电容传感元件采用了陶瓷膜与氧化铝 96 个,机械压力,扣环, 外壳和 O 型环。通常陶瓷膜片由 O 形圈 连接 。一个 O 形圈是用于与对面nts扣环 连接 的陶瓷膜片受到压力时应用。在这个设计中,媒 介用来连接 陶瓷隔膜,小学的 O 型环 接触 和 压力材料。对于低压应用中,往往是陶瓷膜片大而薄。这就在高冲击和振动条件下 可能导致 失败 。 陶瓷传感器用于工业和越野高达 1500 磅 /平方英寸的应用,然而,耐压(也称为压力超负荷)被限制到 1.2 倍额定压力。如今,这项技术已高于 1500 磅 /平方英寸的用途有限,因为与更好的性能和寿命的低成本应变片 技术的可用性。在循环的环境中,证明压力等级必须减少到相同的操作压力范围,以避免对 O形圈密封失效。由于这种设计没有纳入一个密封盖章,这些传感器不适合操作氨,氢,石油和天然气生产,液压系统,氧气服务,以及许多其他关键轻度到苛刻的应用程序。 O 形圈 可在指定的材料范围 受到 特定媒 介 的攻击,可能会导致在某些恶劣环境的系统故障。传感器制造商通常提供的 O 型圈材料,如丁腈橡胶,氟橡胶清单,三元乙丙橡胶,可以由客户指定。 由于金属箔应变计往往会相当多,他们通常把一前束或膜片焊接压力端口。薄膜传感器体积更小,但他们还需要焊接压力端 口。 在这两种情况下,焊接需要足够深,使他们不 超 过载情况下 - 2500 磅 /平方英寸 以上的操作。 在高循环和压力条件 下 ,的压力传感器的压力脉动可以 在 相差 50范围内变动 ,传感器包装设计必须包括一个机制, 确保焊缝压缩条件下,以避免传感器故障。因为这两个金属箔和薄膜技术,在高工作压力(通常为 1000 微观)低产出,膜片材料必须是经过精心挑选,以便有足够的空间用于超压传感器的性能而不牺牲的转变。普通隔膜在金属箔和薄膜传感器使用的材料往往是 15-5, 17-4和 17-7 PH值与屈服强度高强度不锈钢达 190,000磅 /平方英寸 和低热膨胀系数。压力端口必须是相同的隔膜材料,以避免任何温度条件下焊接分离。 传感器采用半导体应变计技术可分为两类,一类充油传感器采用薄的隔离膜片和离子注入技术和新兴的保税体硅克里斯塔尔扩散焊工艺。充油压阻式传感器主要采用与硅芯片植入离子小应变计,孤立于真实世界的一个薄金属膜(介乎0.0010.0015 英寸典型厚度的手段, 这 取决于压力范围)。 随着批量半导体应变计技术,应变计是直接安装到一个加工传感元件,其中光圈和压力端口是在同一进程中加工 的 。这消除了与焊接有关的问题,油填充 了空腔 以及内部 O 形圈 。一个直接的扩散过程中使用的无机半导体测量仪器,以使被放置在一个金属膜片准确高效,准确地对是不会受到媒体的隔膜一侧。该密封设计与液压泵和马达相关的高 循环环境优良。高应变系数,以及低操作压力,使膈肌要厚。这提供了 强有力 的证明 。 nts 图 2。查看一个典型的保税箔应变计。 图 3。半导体测量仪使用惠斯通电桥电路。 压 力 尖峰和瞬态保护迅速开放和阀和液压系统电磁阀关闭往往产生快速 、 高频尖峰和瞬态压力可能从几微秒 到 最后 的 几百毫秒。这些快速移动瞬变幅度可高达 20 倍的一个系统的额定压力, 而 且 会破坏电子压力传感器,除非它们是受保护的使用缓冲器和节流 器 。 这些保护装置可以安装在传感器作为一个不可分割的组成部分或作为一个独立的设备。这些设备,同时保护损坏移动瞬变快速传感器,可以挫伤传感器(取决于设计反应时间)。图 4 显示详细 积分和外部压力穗冷落技术。对于系统优化,如响应时间,长度 L 和直径必须仔细挑选。在理想的条件下,缓冲器必须能够 缓慢对 100-150 之间的所有信号的施加压力,以保持快速吞吐量,但仍然 依靠 传感技术和包装类型而定。 电磁干扰 /射频干扰在移动式液压应用的保护,在快速电瞬态电污染,静电nts放电( ESD)和电磁干扰 /射频干扰,必须对系统的控制 保持稳定 。这种干扰的例子包括通信设备,开关电源,焊接设备,电动马达。该传感器包不能产生或受到从 100千赫信号至 2千兆赫 的 不必要的外部电力的影响。它也必须能够抵御辐射,并进行了敏感性,并在其发布的 规格严格 运作,如移动式起重机,剪式千斤顶,叉车和许多其他关键应用。典型的保护使用中可以看到图 5。 图 4。缓冲器可以使用内部或外部的技术,以减少压力尖峰 图 5。典型的 EMC 公司,公共服务电子化,并在压力传感器,电快速瞬变保护计划。 压力峰值压力峰值危险微 秒到毫秒的压力,可以达到 15 倍,正常的系统操作压力扫射。例如,如果一个阀门突然转向以阻止流动,产生的冲击波可以在系统内产生。同样, 如果是移动的液压系统负载和负载突然停止,系统可能会作出反应, 系统 的压力 可能短时间 激增。 电子控制系统 - 例如与微差扫描时间 - 没有足够快,检测时间短穗的 PLCnts等。通常,第一个迹象是生成一个系统压力尖峰 , 是在一个压力传感器的零输出的积极转变。电子控制系统中的传感器通常表明输出作为转移的需求压力范围外的条件,这可能导致系统控制器关闭。 压力传感器组件最容易受到压力尖峰的损害。传感 器 的 反应 很快 , 能作出反应的峰值有迹象显示压力 已经过度 。这是不是因为换能器是小于机械衡量它取代耐用。其实,一个传感器服务,旨在为严重的应该已被指定。斯派克斯也破坏 产生 他们的机器 。 不稳定流动的液体 一般在系统产生不稳定的尖峰流量,降低效率,加快阀门和密封件的磨损。 (请注意,不构成压力峰值在气动系统的严重问题,因为空气是可压缩 的 ,这往往会挫伤休克。循环压力骤增,由压缩机脉动造成的,构成一个更大的潜在问题,因为压力骤增 - 而不是 剧增 是 经常反复发生。) 压力峰值 通常 可以通过 一个 换能器 来 检测,例如, 5 倍的正常工 作压力范围示波器。一旦确定存在于一个系统 尖峰脉冲 , 这些应用中的任何一个都 可以用来防止损害他们的传感器。具有更高压力等级传感器都可以使用。但是,这样做牺牲在正常范围的准确性,因为一个拥有更广泛的工作范围传感器 它的解决方案会更难 。 作为替代方案,一个缓冲可以用来 限制 峰 值 脉冲 。是一个缓冲的传感器之间和 峰值脉冲 源管道安装一孔。这种做法的潜在缺点是,它减缓了测 量反应。如果测量途径和反应都能被控制 , 则对 可以 耐受 峰 值 脉冲 传感器 应作出具体规定。显然,这些传感器 成本更高 . ntsZhaoevaluateduringC211 2006 Elsevier Ltd. All rights reserved.abrasive particles and carrier gas coming out from a nozzleimpinges on the target surface and erodes it. The fine par-mass flow rate and impact angle 57, the erodent abrasiveproperties 810, the nozzle material and its geometrysection in sand blasting (see Fig. 1), the nozzle entry regionsuers form severe abrasive impact, which may cause largetance 1922. Residual stresses arise from a mismatchbetween the coecients of thermal expansion (CTE), sin-tering rates and elastic constants of the constituent phasesand neighbouring layers, and the residual stress fielddepends on the geometry of the layered structure and onthe thickness ratio among layers 2326. Toschi 22*Corresponding author. Tel.: +86 531 88392047.E-mail address: jxdeng (D. Jianxin).International Journal of Refractory Metals & Hardticles are accelerated by the gas stream, commonly com-pressed air at a few times atmospheric pressure. Theparticles are directed towards the surfaces to be treated.As the particles impact the surface, they cause a small frac-ture, and the gas stream carries both the abrasive particlesand the fractured particles away. The nozzle is the mostcritical part in the sand blasting equipment. There aremany factors that influence the nozzle wear such as: thetensile stresses. The highest tensile stresses are located atthe entry region of the nozzle. Thus, the erosion wear ofthe nozzle entry region is always serious in contrast withthat of the center area 11,15.Laminated hybrid structures constituted by alternatelayers of dierent materials can be properly designed toinduce a surface compressive residual stress leading to animproved surface mechanical properties and wear resis-Keywords: Nozzles; Ceramic materials; Laminated materials; SiC1. IntroductionSand blasting treatment is an abrasive machining pro-cess and is widely used for surface strengthening 1, surfacemodification 2, surface clearing and rust removal 3,4,etc. It is suitable for the treatment of hard and brittle mate-rials, ductile metals, alloys, and nonmetallic materials. Inthe sand blasting process, a very high velocity jet of fine1116, and the temperatures 17,18. Ceramics, beinghighly wear resistance, have great potential as the sandblasting nozzle materials.Several studies 11,15 have shown that the entry area ofa ceramic nozzle exhibited a brittle fracture inducedremoval process, while the center area showed plowingtype of material removal mode. As the erosive particleshit the nozzle at high angles (nearly 90C176) at the nozzle entryErosion wear of laminatedDeng Jianxin*, Liu Lili,Department of Mechanical Engineering, Shandong UniversitReceived 31 March 2006;AbstractSiC/(W,Ti)C ceramic nozzles with laminated structures were producedand exit region of the nozzle. Finite element method was used tocoecients and shrinkage of the SiC and (W,Ti)C solidsolutionthe laminated ceramic nozzle was assessed by sand blasting; the resultsnozzle with the same composition. The experimental results have shownresistance to that of the homologous stress-free nozzles.0263-4368/$ - see front matter C211 2006 Elsevier Ltd. All rights reserved.doi:10.1016/j.ijrmhm.2006.06.005ceramic nozzlesJinlong, Sun Junlongy, Jinan 250061, Shandong Province, PR Chinaaccepted 30 June 2006by hot pressing in order to reduce the tensile stress at the entrythe residual stresses due to the dierent thermal expansionthe sintering process of the composite. The erosion wear ofwere compared with those obtained with an unstressed referencethat the laminated ceramic nozzles have superior erosion /locate/ijrmhmMaterials 25 (2007) 263270ntselement method. The erosion wear ofthe laminatedceramicnozzles was investigated in comparison with an unstressedreference nozzle with the same composition.2. Materials and experimental procedures2.1. Preparation of SiC/(W,Ti)C laminated ceramicnozzle materialsThe starting materials were (W,Ti)C solidsolution pow-ders with average grain size of approximately 0.8 lm, pur-ity 99.9%, and SiC powders with average grain size of1 lm, purity 99.8%. Six dierent volume fractions of(W,Ti)C (55, 57, 59, 61, 63, 65 vol.%) were selected indesigning the SiC/(W,Ti)C laminated nozzle material witha six-layer structure. The compositional distribution of thelaminated ceramic nozzle materials is shown in Fig. 2.Itisindicated that the compositional distribution of the lami-264 D. Jianxin et al. / International Journal of Refractory Metals & Hard Materials 25 (2007) 263270et al. reported that laminated hybrid structures canimprove the sliding wear resistance of alumina. Portu 27et al. showed that laminated structures with compressiveresidual stresses within the surface regions was a suitableway to obtain composite materials with superior tribologi-cal properties. Deng et al 28. showed that gradient cera-mic nozzle exhibited high wear resistance over commonceramic nozzles.In the present study, SiC/(W,Ti)C ceramic nozzles withFig. 1. Schematic diagram of the interaction between the erodent particleand the nozzle in sand blasting processes.laminatedstructureswereproducedbyhotpressinginorderto reduce the tensile stress at the entry and exit region of thenozzle. The residual stress of the laminated nozzle duringthe sintering process was calculated by means of the finiteFig. 2. Compositional distribution of (a) the SiC/(W,Ti)C ceramic nozzle laminatednozzles (CN-2).nated nozzle materials changes in nozzle axial direction.As the heat conductivity of SiC is higher than that of(W,Ti)C solidsolution, while its thermal expansion coe-cient is lower than that of (W,Ti)C, the layer with the high-est volume fraction of SiC was put both in the entry layerand in the exit layer (see Fig. 2(a). The homologous stress-free nozzle with no compositional change is shown in Fig. 2(b). The ceramic nozzle laminated both in entry and exitarea is named GN-3, while the stress-free nozzle is namedCN-2.Six SiC/(W,Ti)C composite powders of dierentmixture ratios were prepared by wet ball milling in alco-hol with cemented carbide balls for 80 h respectively.Following drying, the mixtures composite powders withdierent mixture ratios were laminated into the mouldin turn. The sample was then hot-pressed in flowingnitrogen for 40 min at 1900 C176C temperature with30 MPa pressure.both in entry and exit area (GN-3), (b) the homologous stress-freents2.2. Sand blasting testsFig. 3 shows the schematic diagram of the abrasive air-catcher, an abrasive hopper, and a nozzle. The air and gritflow adjusting was controlled by the valves and regulators.The gas flow rate is controlled by the compressed air, andthe abrasive particle velocity through the nozzle is adjustedto 60 m/s.The erodent abrasives used in this study were of siliconcarbide (SiC) powders with 50150 lm grain size. TheFig. 3. Schematic diagram of the sand blasting machine tool (1) aircompressor, (2) control valve, (3) filter, (4) desiccator, (5) press adjustingvalve, (6) dust catcher, (7) blasting gun, (8) abrasive hopper, (9) ceramicnozzle).Fig. 5. Photo of the GN-3 laminated ceramic nozzles.D. Jianxin et al. / International Journal of Refractory Metals & Hard Materials 25 (2007) 263270 265jet machine tool (GS-6 type), which consists of an air com-pressor, a blasting gun, a control valve, a particle supplytube, a filter, a desiccator, an adjusting press valve, a dustFig. 4. SEM micrograph of the SiC abrasives used for sand blasting.SEM micrograph of the SiC powders used for the dry sandblasting is shown in Fig. 4.Nozzles with internal diameter 8 mm and length 30 mmmade from SiC/(W,Ti)C laminated structure (GN-3) andstress-free structure (CN-2) were manufactured by hot-pressing as can be seen in Fig. 5.The mass loss of the worn nozzles was measured with anaccurate electronic balance (minimum 0.1 mg). All the testconditions are listed in Table 1. The erosion rates (W)ofthe nozzles are defined as the nozzle mass loss (m1) dividedby the nozzle density (d) times the mass of the erodentabrasive particles (m2):Table 1Sand blasting test conditionsSand blasting equipment GS-6 type sand blasting machine toolNozzle material GN-3 laminated nozzle CN-2stress-free nozzleDimension of nozzle U8 mm (internal diameter) 30 mm (length)Erodent abrasives 50150 lm SiC powdersCompressed air pressure 0.4 MPaCumulative mass weigh Accurate electronic balance(minimum 0.1 mg)Table 2Hardness of dierent layers of the laminated nozzle materialsLayer (W,Ti)C content (vol.%) Vickers hardness Hv (GPa)1 55 26.892 57 26.523 59 25.934 61 25.705 63 24.676 65 24.15nts266 D. Jianxin et al. / International Journal of RefractoryW m1=d:m21where the W has the units of volume loss per unit mass(mm3/g).The finite element method (FEM) was used as a meansof numerically evaluating the residual stress and its distri-Fig. 6. SEM micrographs of each polished layer of the GN-3 laminated ceramicthird layer, (d) the fourth layer, (e) the fifth second layer, and (f) the sixth layer.Fig. 7. Distribution of (a) the axial (rz), (b) the radial (rr), and (c) the circumferenprocess.Metals & Hard Materials 25 (2007) 263270bution of the laminated ceramic nozzle in the fabricatingprocesses.For observation of the micro-damage and determinationof erosion mechanisms, the worn nozzles were sectionedaxially. The eroded bore surfaces of the nozzles were exam-ined by scanning electron microscopy.nozzle material (a) the first layer (entry zone), (b) the second layer, (c) thetial (rh) residual stresses in the GN-3 laminated nozzle in fabricatingntsD. Jianxin et al. / International Journal of Refractory3. Results and discussion3.1. Microstructural characterization and propertiesof the laminated nozzle materialsHardness measurements were performed by placingVickers indentations on every layer of the cross-sectionalsurface of GN-3 laminated nozzle material. The indenta-tion load was 200 N and a minimum of three indentationswere tested for each layer. The Vickers hardness (GPa) ofeach layer is given byHv 1:8544P2a22where P is the indentation load (N), 2a is the catercornerlength (lm) due to indentation. Hardness of each layerof the GN-3 laminated nozzle material is presented inTable 2.SEM micrographs of each polished layer of GN-3 lami-nated ceramic nozzle material are shown in Fig. 6. Theblack areas were identified by EDX analysis as SiC, andFig. 8. (a) The axial (rz), (b) the radial (rr), and (c) the circumferential (rh) residualposition along the axial direction of the nozzle.Metals & Hard Materials 25 (2007) 263270 267the white phases with clear contrast were (W,Ti)C. It canbeseenthattheSiCparticlesarequiteuniformlydistributedthroughout the microstructure, porosity is virtually absent.3.2. Residual stress at the laminated nozzlesThe residual stress of the laminated ceramic nozzle in thefabricatingprocesswascalculatedbymeansofthefiniteele-ment method by assuming that the compact is cooled fromsintering temperature 1900 C176C to room temperature 20 C176C.Thermo-mechanical properties of (W,Ti)C and SiC are asfollows:W;TiC : E 480 GPa; m 0:25; a 8:5C210C06KC01;k 21:4W=mK:SiC : E 450 GPa; m 0:16; a 4:6C210C06KC01;k 33:5W=mK:Owing to the symmetry, an axisymmetric calculationwas preferred. Presume that it was steady state boundaryconditions. The results of the distribution of the axialstresses in the GN-3 laminated nozzle in fabricating process at dierentntsshowed higher cumulative mass loss under the same testconditions.The worn ceramic nozzles were cut after operation inlongitudinal directions for failure analysis. Fig. 10 showsthe photos of the inner bore profile of the GN-3 andCN-2 nozzles after 540 min operation. It is showed thatinner bore diameter of the worn CN-2 nozzle along thenozzle longitudinal directions is larger than that of theworn GN-3 laminated nozzles, especially at the nozzleentry region.The results of the nozzle entry bore diameter variationwith the erosion time of for GN-3 and CN-2 nozzles areshown in Fig. 11. It is indicated that the entry bore dia-meter enlarges greatly with the operation time for CN-2stress-free nozzle. While the entry bore diameter increasesslowly with the operation time for GN-3 laminated nozzle.Fig. 12 shows the comparison of the erosion rates for GN-3and CN-2 nozzles in sand blasting processes. It is obviousthat the erosion rate of the stress-free nozzles is higherthan that of the laminated nozzles. Therefore, it is appar-ently that the GN-3 laminated nozzles exhibited higher ero-sion wear resistance over the CN-2 stress-free nozzle underthe same test conditions.268 D. Jianxin et al. / International Journal of Refractory Metals & Hard Materials 25 (2007) 263270(rz), the radial (rr), and the circumferential (rh) residualstresses calculated by FEM in the GN-3 laminated nozzlein cooling process from sintering temperature to room tem-perature are showed in Fig. 7. It is obvious that an excesscompressive residual stress is formed both at the entry andthe exit region of the GN-3 laminated nozzle. Fig. 8 showsthe axial (rz), the radial (rr), and the circumferential (rh)residual stresses in GN-3 laminated nozzle at dierent posi-tion along its axes. It in indicated that rz, rr, and rhresid-ual stress both at the entry zone and at the exit zone iscompressive, and the maximum value is C094.003 MPa,C0130.949 MPa, and C0265.368 MPa respectively. There-fore, laminated structures in ceramic nozzles can form anexcess compressive residual stresses at the entry and exitregion of the nozzle during fabricating process.3.3. Erosion wear of the laminated nozzleFig. 9. Cumulative mass loss of the GN-3 laminated nozzle and the CN-2stress-free nozzle in sand blasting processes.The erosion wear of the GN-3 laminated ceramic nozzlewas assessed in comparison with the CN-2 stress-free cera-mic nozzle by sand blasting. Fig. 9 shows the cumulativemass loss of the GN-3 and CN-2 nozzles in sand blastingprocesses. It can be seen that the cumulative mass loss con-tinuously increased with the operation time. Comparedwith GN-3 laminated nozzle, the CN-2 stress-free nozzleFig. 10. Photos of the worn inner bore profile of (a) the GN-3 laminatedFig. 11. Nozzle entry bore diameter variation with the erosion time for theGN-3 laminated nozzle and the CN-2 stress-free nozzle in sand blastingprocesses.nozzle, (b) the CN-2 stress-free nozzle after 540 min operation.ntsFig. 13 shows the SEM micrographs of the entry boresurface of the worn CN-2 stress-free nozzle. From theseSEM micrographs, dierent morphologies and fracturemodes of the nozzles can be seen clearly. The CN-2stress-free nozzle at the entry area failed in a highly brittlemanner, and exhibited a brittle fracture induced removalprocess. There are a lot of obvious pits located on the noz-zle bore surface indicating that brittle fracture took place.Characteristic SEM pictures taken on the eroded entrybore surface of the GN-3 laminated ceramic nozzle areshown in Fig. 14. It is shown that the appearance of theeroded areas of the laminated nozzle showed a relativesmooth surface by contrast with that of the stress-freenozzle.Ceramic nozzle failure by erosion wear is generallycaused by fracture owing large the tensile stress at the noz-zle entry zone 1115. Because the nozzle entrance regionsuers form severe abrasive impact, and generates largetensile stress, which may cause the subsurface lateral cracksand facilitates removal of the material chips. Thus, the ero-sion wear of the nozzle depends on the stress distribution inthe entry region. Once the maximum tensile stress exceedsthe ultimate strength of the nozzle material, fracture willoccur.The higher erosion wear resistance of the GN-3 lami-nated nozzle compared with that of the CN-2 stress-freenozzle can be analysed in terms of the formation of com-pressive residual stresses both on the entry area and onthe exit region. As calculated above, compressive residualFig. 12. Comparison of the erosion rate of the GN-3 laminated nozzle andthe CN-2 stress-free nozzle in sand blasting processes.D. Jianxin et al. / International Journal of Refractory Metals & Hard Materials 25 (2007) 263270 269Fig. 13. SEM micrographs of the entry bore surfaceFig. 14. SEM micrographs of the entry bore surfaceof the worn CN-2 stress-free ceramic nozzle.of the worn GN-3 laminated ceramic nozzle.ntsstresses were formed at the entry and exit region of theGN-3 laminated nozzle in fabricating process from sinter-ing temperature to room temperature, which may partially8 Srinivasan S, Scatterrgood RO. Eect of erodent hardness on erosionof brittle materials. Wear 1988;128:13952.9 Shipway PH, Hutchings IM. The influence of particle properties on270 D. Jianxin et al. / International Journal of Refractory Metals & Hard Materials 25 (2007) 263270counteract the tensile stresses in the nozzle entry and exitsection resulting from external loadings. This eect maylead to the increase in resistance to fracture, and thusincrease the erosion wear resistance of the laminatednozzle.4. ConclusionsSiC/(W,Ti)C laminated ceramic nozzles were producedby hot pressing. The purpose is t
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。