




已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中国人民大学附属中学 7 6双曲线 1 双曲线的定义平面内到两个定点f1 f2的距离差的绝对值等于定长2a的动点p的轨迹叫做双曲线 即 p pf1 pf2 2a 2a f1f2 2 双曲线的标准方程和性质 范围 从标准方程 看出曲线在坐标系中的范围 双曲线在两条直线x a的外侧 即 x a 即双曲线在两条直线x a的外侧 对称性 双曲线关于每个坐标轴和原点都是对称的 这时 坐标轴是双曲线的对称轴 原点是双曲线的对称中心 双曲线的对称中心叫做双曲线的中心 顶点 双曲线和x轴有两个交点a1 a 0 a2 a 0 它们是双曲线的顶点 渐近线 直线称为双曲线的渐近线 从图上看 双曲线的各支向外延伸时 与这两条直线逐渐接近 离心率 等轴双曲线定义 实轴和虚轴等长的双曲线叫做等轴双曲线 即x2 y2 等轴双曲线的性质 1 渐近线方程为y x 2 渐近线互相垂直 例1 1 已知焦点f1 5 0 f2 5 0 双曲线上的一点p到f1 f2的距离差的绝对值等于6 求双曲线的标准方程 2 求与椭圆共焦点且过点的双曲线的方程 3 已知双曲线的焦点在y轴上 并且双曲线上两点坐标分别为 求双曲线的标准方程 例2 已知双曲线中心在原点 一个顶点的坐标为 3 0 且焦距与虚轴长之比为5 4 则双曲线的标准方程是 例3 设f1和f2为双曲线的两个焦点 若f1 f2 p 0 2b 是正三角形的三个顶点 则双曲线的离心率为 a b 2c d 3 b 例4 abc中 固定底边bc 让顶点a移动 已知 bc 4 且sinc sinb sina 求顶点a的轨迹方程 例5 矩形abcd的两条对角线相交于点m 2 0 ab边所在直线的方程为x 3y 6 0 点t 1 1 在边ad所在直线上 i 求边ad所在直线的方程 ii 求矩形abcd外接圆的方程 iii 若动圆p过点n 2 0 且与矩形abcd的外接圆外切 求动圆p的圆心的轨迹方程 3x y 2 0 解 i 因为边ab所在直线的方程为x 3y 6 0 且ad与ab垂直 所以直线ad的斜率为 3 又因为点t 1 1 在直线ad上 所以边ad所在直线的方程为y 1 3 x 1 即3x y 2 0 ii 由解得点a的坐标为 0 2 因为矩形abcd两条对角线的交点为m 2 0 所以m为矩形abcd外接圆的圆心 又从而矩形外接圆的方程为 x 2 2 y2 8 例6 已知椭圆与双曲线有公共焦点f1和f2 设p点为两曲线的一个交点 1 试用b n表示 pf1f2的面积 2 当b n t t 0 t为常数 时 求 pf1f2面积的最大值 例7 已知双曲线c b是右顶点 f是右焦点 点a在x轴正半轴上 且满足成等比数列 过f作双曲线c在第一 三象限
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 26307-2025银靶材
- T/CNSS 015-2022孕期体重增长异常妇女膳食指导
- 2025年河北邯郸市口腔医院秋季博硕人才引进12人备考考试题库附答案解析
- 2025贵州省康复医院合同制人员招聘备考考试题库附答案解析
- 2025甘肃天水市事业单位招聘工作人员270人备考练习题库及答案解析
- 2025贵州江口县第六幼儿园招聘备考考试题库附答案解析
- 2025马关县小坝子镇公开储备一批村“两委”后备干部(16人)笔试备考题库及答案解析
- 2025福建漳州市芗江人力资源服务有限公司招聘若干人备考考试题库附答案解析
- 2025年金华市中医医院招聘编外工作人员5人(第二批)备考考试题库附答案解析
- 工厂安全培训标准周期课件
- 部编人教版五年级上册语文 第三单元单元分析
- 普通心理学第六版PPT完整全套教学课件
- 护理综述论文的撰写
- 医院院内急会诊制度
- TSDPIA 05-2022 宠物猫砂通用技术规范
- 动力管道培训
- GB/T 11446.9-2013电子级水中微粒的仪器测试方法
- 热力学发展史概述讲课稿
- 教学配套课件:二维动态图形设计基础
- 预防电信诈骗网络诈骗
- 督脉灸参考课件
评论
0/150
提交评论